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ABSTRACT
In this paper, we study the diversity maximization problem (a.k.a.

maximum dispersion problem) in which given a set of n objects

in a metric space, one wants to find a subset of k distinct objects

with the maximum sum of pairwise distances. We address this

problem using the distributed framework known as randomized

composable core-sets [3]. Unlike previous work, we study small-size

core-set algorithms allowing minimum possible intermediate out-

put size (and hence achieving large speed-up in the computation

and increased parallelism), and at the same time, improving sig-

nificantly over the approximation guarantees of state-of-the-art

core-set-based algorithms. In particular, we present a simple dis-

tributed algorithm that achieves an almost optimal communication

complexity, and asymptotically achieves approximation factor of

1/2, matching the best known global approximation factor for this

problem. Our algorithms are scalable and practical as shown by

our extensive empirical evaluation with large datasets and they

can be easily used in the major distributed computing systems like

MapReduce. Furthermore, we show empirically that, in real-life

instances, using small-size core-set algorithms allows speed-ups up

to > 68 in running time w.r.t. to large-size core-sets while achieving

close-to-optimal solutions with approximation factor of > 90%.
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1 INTRODUCTION
Computing a concise, descriptive, but yet a diverse, summary of

a dataset is a central problem in machine learning, data mining

and information retrieval. In all of these scenarios, the goal is to

design efficient methods for searching and summarizing large data

sets in a way that preserves the diversity of the data. In one of

the most popular forms, also referred to as the max. dispersion or
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the remote-clique diversity maximization, the problem is as follows:

given a set of n objects in a metric space, one wants to find a subset

of k distinct objects with the maximum sum of pairwise distances.

In order to solve such diversity maximization problems for in-

creasingly large data sets in many applications [2], it is desirable to

find a scalable distributed algorithm. To achieve this goal, a recent

line of research is to apply the distributed framework known as

composable core-sets [3].

1.1 Preliminaries
Consider a set of n points N with a metric distance dist . We de-

note points with letters P , and Q , and index them with i , and j
such as Pi or Q j . Distance of two points Pi and Pj is denoted by

dist(Pi , Pj ). We define diversity of a set of points S ⊆ N to be

Div(S) =
∑
P,Q ∈S dist(P ,Q).

Diversity Maximization. In an instance of the diversity maxi-

mization problem, we are given a parameter k and a set N of n
points. The goal is to choose a set S ⊆ N of (at most) k distinct

points with maximum diversity. We denote this optimum set by

OPT, and define AvgOpt to be the average distance of points in

OPT, i.e. AvgOpt = Div(OPT)/
(k
2

)
. Given a set of elementsU ⊆ N ,

let OPT(U ) be the value of optimum solution for the diversity max-

imization instance over points in U . For example, OPT(N ) corre-
sponds to the value of OPT.
Randomized Composable Core-sets [3]. Assuming that n is

large, all points may not fit on one machine, and we need to apply a

distributed algorithm to solve the diversity maximization problem.

To deal with this issue, we consider distributing all points intom
machines with indices {1, . . . ,m}, where each point goes to one

randomly chosen machine. Let {T1,T2, . . . ,Tm } be subsets of points
going to machines {1, 2, . . . ,m} respectively. In this case, we say

that {T1,T2, . . . , Tm } is a random clustering of N , i.e., {T1,T2, . . . ,
Tm } is a family of subsetsTi ⊆ N , where each point ofN is assigned

to one randomly chosen subset.

Definition 1. Consider an algorithm ALG that given any subset

T ⊆ N returns a subset ALG(T ) ⊆ T with size at most k ′. Let {T1,T2,
. . . , Tm } be a random clustering of N tom subsets. We say that al-

gorithm ALG is an algorithm that implements an α-approximate

randomized composable core-set of size k ′ for the diversity maxi-

mization problem with cardinality constraint k , if,

E [OPT(ALG(T1) ∪ . . . ∪ ALG(Tm ))] ≥ α · OPT(T1 ∪ . . . ∪Tm ),

where the expectation is taken over the random choice of {T1,T2, . . . ,Tm }.
For brevity, instead of saying that ALG implements a composable core-

set, we say that ALG is an α-approximate randomized composable

core-set.
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For ease of notation, when it is clear from the context, we may

drop the term composable, and refer to composable core-sets as core-

sets. Throughout this paper, we discuss randomized composable

core-sets for the diversity maximization problem.

Distributed Approximation Algorithm. Note that we can use a

randomized α-approximate composable core-set algorithm ALG to

design the following simple distributed approximation algorithm:

(1) Based on a random clustering {T1, . . . , Tm } defined above,

allocate points in Ti to machine i .
(2) Each machine i computes a randomized composable core-set

Si ⊆ Ti of size k
′
, i.e., Si = ALG(Ti ) for each 1 ≤ i ≤ m.

(3) Collect the union of all core-sets, U = ∪1≤i≤mSi , on one

machine, and apply a post-processing algorithm ALG′ to com-

pute a solution S over the setU . Output S .

If ALG′ is a local search or greedy 1/2-approximation for di-

versity maximization, the above algorithm simply achieves a dis-

tributed approximation factor of
α
2
.

1.2 Our Contributions
We obtain both almost minimal core-set sizes k ′ << k with almost

optimal approximation guarantees (assuming data is distributed

randomly to the machines). More precisely, we present a simple dis-

tributed algorithm that achieves an almost optimal communication

complexity, and moreover, it asymptotically achieves approxima-

tion factor of 1/2 which is the best possible approximation factor

for the global optimization problem under certain complexity the-

ory assumptions. This improves a recent work of Abbasi Zadeh

et al. [1] which presented a randomized 8/25 approximation al-

gorithm for diversity maximization which also has a core-set size

of at least k as in previous results. We also show hardness results

for non-randomized partitioning of the data, proving that random

partitioning is necessary to achieve reasonable performance guar-

antees.

Finally we show that our small-size core-set algorithms are scal-

able and practical as shown by our extensive empirical evaluation

with large datasets, and they can be easily implemented in the major

distributed computing systems like MapReduce. Furthermore, we

show empirically that reducing the core-set sizes helps achieving

major speed-ups while maintaining high diversity in the solutions.

In real-life instances, our algorithms reach close-to-optimal solu-

tions with approximation factor of > 90%while allowing speed-ups

up to > 68 times w.r.t. the use of distributed large-size core-sets.

An approximation factor of > 90% is far exceeding the theoretical

approximation barrier for the problem and provides useful output

as we show in our evaluation.

2 ALGORITHMS
We propose algorithms Diameter and Distributed Diameter

explained as Algorithms 1 and 2 with much better provable worst-

case approximation guarantees in range [0.25, 0.5] (approaching

the
1

2
barrier as number of machines converges to one), and having

asymptotically smallest possible core-set size. We note that to have

at least k selected distinct points by all machines, the core-set

size should be at least
k
m . Algorithm Diameter has core-set size

max{2, 2⌈ k
2m ⌉} ≤

k
m + 2. We also know that, assuming the Planted

Clique Conjecture, 0.5 is the best approximation guarantee even

in the single-machine setting. Algorithm Distributed Diameter

partitions the input set of n points randomly amongm machines

giving setTℓ to machine ℓ. Eachmachine runs AlgorithmDiameter

to find r = ⌈ k
2m ⌉ disjoint pairs of points in Tℓ with maximum

sum of distances

∑r
i=1 dist(P2i−1, P2i ) where (P1, P2), (P3, P4), · · · ,

(P2r−1, P2r ) are the r pairs of selected points. This can be done

using maximum weighted matching algorithms in general graphs

by constructing a complete graph with Tℓ as its set of nodes and
putting an edge weight of dist(P ,Q) for any P ,Q ∈ Tℓ between

nodes representing P and Q . Algorithm Distributed Diameter

receivesmr pairs of points from them machines. For simplicity of

notation, let (P1, P2), (P3, P4), · · · , (P2mr−1, P2mr ) be thesemr pairs.

Among them ⌊ k
2
⌋ pairs with maximum distances are chosen as the

final output set. In other words, if we denote the ⌊k/2⌋ selected pairs
by (P2i1−1, P2i1 ), (P2i2−1, P2i2 ), · · · , (P2i ⌊k/2⌋−1, P2i ⌊k/2⌋ ), we will have
dist(P2i j−1, P2i j ) ≥ dist(P2j′−1, P2j′) for any 1 ≤ j ≤ ⌊k/2⌋ and any
j ′ ∈ {1, 2, · · · ,mr } \ {i1, i2, · · · , i ⌊k/2⌋ }.

Algorithm 1 Algorithm Diameter

1. r ← ⌈ k
2m ⌉

2. Find and return r pairs of disjoint points

(P1, P2), (P3, P4), · · · , (P2r−1, P2r ) with maximum sum of

distances:

∑r
i=1 dist(P2i−1, P2i )

Algorithm 2 Algorithm Distributed Diameter

1. Start withm empty sets {Tℓ}
m
ℓ=1

.

2. Put each of the n points in one of them sets {Tℓ}
m
ℓ=1

indepen-

dently and uniformly at random.

3. Each machine 1 ≤ ℓ ≤ m, runs algorithm Diameter on set Tℓ ,
and returns r pairs.
4. Among the mr selected pairs, return ⌊k/2⌋ pairs with the

maximum distances as the final solution.

Theorem 2. Let d = k
m . For any 1 ≤ k,m ≤ n, algorithm Diame-

ter is a randomized (f (d) −O( 1

m1/3 +
1

k ))-approximate composable

core-set for the diversity maximization problem where function f is

defined as follows for d ≤ 2: f (d) = 1−e−d
d − 3e−d

4
, and it is defined

as follows for d > 2:

f (d) =
1

2

−
1

2

(
e−d

∞∑
r ′=2r

r ′ + 1 − 2r

r ′ + 1
×
dr
′

r ′!

)
−
1

4

(
e−d

r−1∑
r ′′=0

1

(2r ′′ + 1)
×

d2r
′′

(2r ′′)!

)
where r is ⌈d/2⌉. Moreover, the distributed approximation factor of

algorithm Distributed Diameter is also lower bounded by (f (d) −
O( 1

m1/3 +
1

k )).
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