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ABSTRACT
The streaming computation model is a standard model for

large-scale data analysis: the input arrives one element at a

time, and the goal is to maintain an approximately optimal

solution using only a constant, or, at worst, polylogarithmic

space.

In practice, however, recency plays a large role, and one

often wishes to consider only the lastw elements that have

arrived, the so-called sliding window problem. A trivial ap-

proach is to simply store the lastw elements in a buffer; our

goal is to develop algorithms with space and update time

sublinear in w . In this regime, there are two frameworks:

exponential histograms and smooth histograms, which can

be used to obtain sliding window algorithms for families of

functions satisfying certain properties.

Unfortunately, these frameworks have limitations and can-

not always be applied directly. A prominent example is the

problem ofmaximizing submodular functionwith cardinality

constraints. While some of these difficulties can be rectified

on a case-by-case basis, here, we describe an alternative ap-

proach to designing efficient sliding window algorithms for

maximization problems. Then we instantiate this approach

on a wide range of problems, yielding better algorithms for

submodular function optimization, diversity optimization

and general subadditive optimization. In doing so, we im-
prove state-of-the art results obtained using problem-specific

algorithms.
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1 INTRODUCTION
Since their introduction in a seminal work by Alon et al. [2],

data streams have emerged as a tool for processing large

volumes of data. In a standard data stream setting, the input

arrives one element at a time. The goal of the algorithm de-

signer is to compute (or approximate) some function of the

entire input in space sublinear in the input size. Classical re-

sults include estimating frequency moments [2]; estimating

the number of distinct values [7, 25]; approximating impor-

tant graph properties, such as graph cuts [1]; and preserving

an approximately maximum matching [33]. A survey of ap-

plications is provided in [34].

While data stream algorithms have received a lot of well-

deserved attention, they treat all the elements equally: in

particular, there is no difference between an element that

arrived at the beginning of the stream and one that arrived

at the end. In practice, however, recent data is often far more

important; one way to model this assumption is to consider

only the lastw elements of the stream during the computa-

tion. While w is typically much smaller than the total size

of the stream (since the latter can be arbitrarily large), the

goal is still to design algorithms with both space and update

time sublinear inw . Note that sliding window problems are
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a subset of dynamic stream problems [29, 34], where any

element can be deleted at any time. Nonetheless, they form

a challenging special case and have been studied extensively,

see, for instance, [3, 4, 11, 13, 15, 16, 18, 26, 28, 31, 32, 36, 38].

Sliding Window Frameworks. To aid in designing sliding

window algorithms, Datar et. al [23], and later Braverman

and Ostrovsky [15] introduced techniques for special fami-

lies of instances. Both of these, as well as the approach we

propose in our work, rely on the existence of an efficient

algorithm for the insertion-only version of the problem. The

frameworks are discussed in detail in the related work sec-

tion, here we introduce them briefly.

Exponential Histograms. Datar et al. [23] introduced the ex-
ponential historgram framework for estimating a non-negative

set function f over a fixed-size sliding window. Their ap-

proach assumes that the function is weakly additive and that

there exists a small space sketch that can be computed in

an insertion-only stream. They show that if the sketch is

composable, that is, an estimate of f (A ∪ B) can be obtained

from the sketches ofA and B, then polylogarithmically many

sketches are sufficient to approximate the function over a

sliding window.

Smooth Histograms. The work of Braverman and Ostro-

vsky [15] further generalized this approach. Instead of look-

ing at composability, the authors consider smooth functions.

At a high level, these are functions that do not experience

sharp transitions from the addition (or deletion) of a single

element, see [15] for a precise definition. Their key idea is

to prove that for such smooth functions, one only needs to

remember the value of the function for logarithmically many

substreams over the course of any window. Such a result can

be achieved by imposing that the difference between the val-

ues of the function on consecutive substreams be sufficiently

large.

This approach is strictlymore general than the exponential

histogram of [23]; however, it also comes with some strong

limitations. To the best of our knowledge, the biggest down-

side of smooth histograms is that to be directly applied, they

require the ability to compute the function almost exactly,

as a (1− ϵ)-approximation of the function f leads to a 1− 5ϵ
approximation of the value of the function over the sliding

window. Thus, anything worse than a 0.8-approximation re-

sults in a trivial solution. In itself, this rules out their method

for many important problems in which providing such an

approximation is NP-hard. A prominent example is that of

submodular function optimization subject to a cardinality

constraint, where a 1− 1/e approximation is the best possible.

This limitation can be overcome on a case-by-case basis,

(see Section 2 below for examples), but doing so requires

intricate reasoning in every case. In this work, we introduce

a different approach to designing sliding window algorithms

for maximization problems, and we apply it to diversity max-

imization and subadditive optimization.

Our Results. In order to solve maximization problems in

the sliding window setting, we take a different perspective

on the problem: instead of identifying a property of functions
that makes them amenable to sliding window computations,

we ask for an algorithmic primitive and prove that it is suf-

ficient to turn any insertion-only algorithm into a sliding

window algorithm. Then we show that this algorithmic prim-

itive is easy to design for our problems.

Our proof is entirely constructive, so we obtain efficient

sliding window algorithms for our problems. Briefly, our

main observation is that it is possible to design an algorithm

that, given two consecutive parts of the stream A and B, re-
duces the problem of producing an approximate solution for

the substream represented by any suffix of the first summary,

A concatenated with B with the additional assumption that

the substream A itself does not contain a good approxima-

tion of the solution. This additional assumption significantly

simplifies the design of sliding window algorithms for maxi-

mization problems. For example, under this assumption, the

solution of the problem for a submodular function is trivial;

in fact, it is enough to simply return the solution contained

in B.
Our reduction algorithm is also simple. It is based on the

observation that for every stream and every sliding window

size, one can easily construct three substreams A, A+, and
B, so that a good solution to the sliding window problem is

contained either inA+, inB, or in a suffix of the first summary,

A, and B.
Furthermore, we show that for many of the problems, our

approach improves upon the hand-tuned implementations

(Table 1 contains a summary of our results). For example,

we give the first sliding window algorithms for a number

of problems, such as the many variants of selection with

diversity constraints problem, submodular maximization un-

der p-matchoid constraints and, more generally, subadditive

function maximization.

Roadmap. We start by reviewing related work in Section 2.

Then we provide a formal formulation of our approach in

Section 3, followed by specific applications. We apply the

result to subadditive function optimization in Section 4.1, and

in Section 4.2, we apply our maximization methods/sketches

for selection with diversity constraints. Finally, we provide

an even stronger version of our approach for submodular

function optimization in Section 5.



Problem Space (prev.) Space (current) Approx. (prev.) Approx. (current)

Maximizing a subadditive function - O(s logw ) - α 2

/2 − ϵ
Submodular maximization (card. const.) O(k log

2w ) O(k logw ) 1/3 − ϵ 1/3 − ϵ
Submodular maximization (p-matchoid const.) - O(k logw ) - O (1/p)
Diversity maximization (linear instances) - O(k log

2w ) - ζ/5 − ϵ
Diversity maximization (other instances) - O(k2 log2w ) - ζ/5 − ϵ

Table 1: A summary of the results obtained in this paper. For simplicity, we assume that the ratio between the
maximum and the minimum values is polynomial in the sizew of the sliding window.We use n for the size of the
stream. In subadditive maximization, we denote by α (resp., s) the approximation factor (resp., the space used) by
a streaming algorithm. In diversitymaximization, we denote by ζ the best approximation factor that a centralized
algorithm can achieve.

2 RELATEDWORK
For brevity, we restrict our literature review mostly to the

sliding window streaming model of computation; we first

review in detail the two main frameworks used to solve

problems in the sliding window streaming model, then we

list algorithms known for specific problems.

Sliding window model. The sliding window model of com-

putation [23] is a powerful computational paradigm that

allows one to naturally model data recency constraints in

streaming settings. In this model, the algorithm receives a

potentially unlimited stream of data points x1,x2, . . . , and,
at any point in time t , it is required to provide the result of a

function f over the active-windowW , i.e., the set of the latest

w data points received (the points xi for i ∈ [min(t −w, t)].
This model encompasses multiple challenging data stream-

ing problems and has received significant attention in the

past [3, 4, 11, 13, 15, 16, 18, 26, 28, 31, 32, 36, 38].

We now review some of the main algorithmic techniques

in this model. In their pioneering work on the sliding window

problem, Datar et al. [23] and later Braverman and Ostro-

vsky [15] introduced two techniques that have been used

successfully for providing low-space complexity algorithms

for a multitude of problems in the sliding window setting.

Exponential histograms. Datar et al. [23] jump-started the

study of the sliding window model in their seminal paper.

They introduced exponential histograms, a general frame-

work for estimating non-negative set functions f over a

fixed-size sliding window. The framework assumes that the

function is weakly additive and that there exists a low-space,

composable sketch that can be computed in an insertion-only

stream. More precisely, the authors assume that the function

f is polynomially bounded by the size of the stream f (A) ≤
poly(|A|) and has the following weak-additivity properties:

f (A∪B) ≥ f (A)+ f (B) and f (A∪B) ≤ cf (f (A) + f (B)) for
a constant cf ≥ 1. Finally, they assume that the function f
admits low-space sketches that can be computed efficiently

in insertion-only streams and can be composed, i.e., an es-

timate of f (A ∪ B) can be obtained from the sketches of A

and B. Under these assumptions, they show that polyloga-

rithmically many sketches are sufficient to approximate the

function.

Smooth Histograms. Braverman and Ostrovsky [15] intro-

duced the smooth histogram technique. The key idea is to

preserve a subset of indices t1, t2, . . ., ts of time in the stream

such that one only needs to keep the value of the function

f for the substream [ti ,n], starting at one of these indices

and ending with the last inserted item. Such an exact (or

approximate) value can be computed using an (insertion-

only) streaming algorithm. Braverman and Ostrovsky show

that for any function f that respects certain smoothness

assumptions, it is possible to keep poly log(w) many such

indices and obtain a good approximation of f over the lat-

est w items. The main idea is to look at the values of the

function in the intervals mentioned above and ensure that

for any pair of indices at distance 2, ti−1, ti+1 the value of
f ([ti+1, t]) ≤ (1 − β)д([ti−1, t]) for some constant β , where
f ([a,b]) is the value of function f on the interval [a,b] of
the stream. For this method to work, the function f to be es-

timated needs to be polynomially bounded f (A) ≤ poly(|A|),
monotone non-decreasing, and, crucially, (α , β)-smooth, a

definition that we now recall.

Definition 2.1. A function f is (α , β)-smooth if for all
times a < b < c < d , we have: (1−β)f ([a, c]) ≤ f ([b, c]) =⇒
(1 − α)f ([a,d]) ≤ f ([b,d]).

Braverman and Ovstrovsky then show that it is enough

to maintain O(log
1+β M/m) such histogram indices, where

M/m is the ratio of the max and min value of the function,

to obtain a 1 − α approximation for any (α , β) smooth func-

tion f that can be computed exactly in the streaming setting.

They also extend their results to functions f for which a

(1 − ϵ)-approximation algorithm exists, in which case Theo-

rems 2 and 3 in [15] show a 1 − 5ϵ-approximation algorithm

in a sliding window. Notice that the smooth histogram pro-

vides a non-trivial result only if the function admits a good

enough approximation (ϵ < 1/5). Hence, it is not applicable



to many problems addressed in the paper (e.g., maximizing

submodular functions).

The authors use the smooth histogram technique to pro-

vide multiple improved results, including better approxi-

mations of weakly-additive functions from [23], memory-

optimal algorithms for frequency moments in Lp for p > 0

and algorithms to find the longest increasing sequence.

Recent Developments. Very recently, and concurrently with
our work, two new generalizations of the smooth histogram

approach have been introduced [10, 12].

In the first of these [12] Braverman et al. introduce the

composable histogram method, which is an adaptation of

the smooth histogram framework that leads to near optimal

results for the heavy hitters problem. Similar to the smooth

histogram framework, this approach applies to function esti-

mation and requires the underlying function to be smooth.

Additionally, it needs a good approximation algorithm for

obtaining estimates of all suffixes on insertion-only streams.

In the second, [10], Braverman et al. specialize the smooth

histogram approach to linear algebra questions by defining a

notion of smooth functions for positive semidefinite matrices.

They use the framework to obtain improved results for many

problems, including spectral and graph sparsification and

low-rank approximation.

These developments are elegantmodifications of the smooth

histogram framework tailored to specific classes of problems

and are in contrast to the work presented here, which gives

a new algorithmic primitive that leads to sliding window

results for a wide range of classic maximization problems.

Our work is orthogonal to the presented frameworks and

presents a simple technique for designing sliding window

algorithms for maximization problems.

2.1 Specific Sliding Window Algorithms
In addition to the frameworks presented, there have been a

number of ad hoc solutions modifying these frameworks for

specific problems. We give a full overview below.

Sampling from sliding windows. Several authors have ad-
dressed the problem of samplingk items from the sliding win-

dow [4, 16]. In this context, the problem is made non-trivial

by the implicit nature of element deletions in the model:

the algorithm is not notified when an element expires and

naively storing all elements’ expiration times would require

Ω(w) space. Babcock et al. [4] introduced the chain-sampling

algorithm, which extends the reservoir sampling method to

sample k items with spaceO(k log(w)) for a window of fixed

sizew . They also show results for sliding windows of varying

lengths. These results were later improved by Braverman et

al. [16] who showed how to do this in optimal space O(k) in
the fixed size window model.

Heavy hitters and statistics for the sliding window. Several
authors [3, 11, 28, 38] studied the problem of finding heavy-

hitters in sliding window streams under the Lp norm, where

one wants to find elements that appear more than a certain

constant fraction of the Lp norm of the frequency vector

of the sliding window. It is known that algorithms with

poly log(w) space are possible only for p ≤ 2 because of

a lower bound on computing the Lp norm in streams [35].

Several authors have provided results for the L1 norm [3, 28,

38].

Braverman et al. [11] provided the first results for the L2

norm which do not allow the use of the smooth histogram

technique. This result implies a poly log(w) algorithm for all

0 < p ≤ 2, closing the gap with the impossibility results. The

authors introduce a semi-smooth algorithm technique that

borrows in part from the smooth histogram method. In a

related problem, Homem et al. [27] provided a data structure

for maintaining the top-k most frequent elements in a sliding

window stream. Recently, Basat et al. [8] provided upper and

lower bounds on the memory needed to approximate sums

over binary sliding window streams.

Sliding window over graphs. Crouch et al. [22] presented

the first results in the sliding window model for graphs. In

particular, they study a model where edges arrive one at a

time and in which one wants to preserve properties for the

graph induced by the sliding window of the latest edges to

arrive. They provide algorithms for graph sparsifiers and

approximate spanners and estimators of the size of the maxi-

mum matching and minimum spanning tree. More precisely,

they show how to preserve an approximate spanner that

allows one to estimate the distance of nodes up to a multi-

plicative factor and a (1 + ϵ)-sparsifier that almost exactly

preserves edge cuts. Applications of these methods include

verifying k-edge-connectivity in a graph or that the graph is

bipartite. The results onmatchings show a constant factor ap-

proximation that is based on a method similar to the smooth

histogram technique. The authors show, in fact, that while

the matching function is not smooth, it holds a smooth-like

property.

Submodular maximization. Epasto et al. [24] gave a (1/3 −

ϵ)-approximation algorithm for arbitrary monotone sub-

modular functions subject to cardinality constraints that

requires Õ(k poly log(w)) space (for polynomially bounded

functions). Submodular functions are not in general smooth,

and they do not admit approximations ≥ 1 − 1

5
, as required

by the smooth histogram framework; however, the authors

design an algorithm based on a variation of the smooth

histogram technique for the problem. They also show a

1/2 − ϵ-approximation algorithm but with significantly more



space. Concurrently, Chen et al. [20] showed a (1/4 − ϵ)-
approximation Õ(k poly log(w)) space for the same classes

of functions. They also show that the same method can be

extended to arbitrary hereditary constraints and provide a

( 1

4p+(1+ϵ )16p2 )-approximation for p-matroid of rank k using

Õ(k poly log(w)) space in the sliding window.

Clustering. The problem of clustering in sliding windows

has also been studied [5, 14]. Braverman [14] shows results

for the fundamental k-median and k-means problem in the

metric and Euclidean cases of the sliding window model.

They provide the first constant factor approximation algo-

rithm that uses polylogarithmic space for metric k-median

and metric k-means problems in the sliding window. The

algorithm uses O(k3 log6(w)) space, where k is the number

of centers to output. Their work improves and addresses an

open problem posed by the work of Babcock et al. [5], which

designed an algorithm with space poly(w) . The algorithm is

based on a core-set method and an extension of the smooth

histogram technique.

In a related line of work, Cohen-Addad et al. [21] studied

the problem of approximating the diameter and the k-center
clustering in the sliding window model. They gave a (3 + ϵ)-
approximation for the diameter problem using space log(Mm ),

whereM,m are the minimum and maximum distances in the

space, respectively. For the k-center problem, they show a

(6 + ϵ)-approximation O(k log
(M
n

)
) space.

Other applications. Beame et al. [9] provide multiple re-

sults in the sliding window model, including an algorithm

for the distinctness problem.

Wang et al. [37] study the problem related to influence

maximization. They cast the problem as a stream mining

problem in which user actions are observed in real time and

one wants to select a set of users with maximum influence

over the most recent actions. The authors observe that the

problem does not respect the requirements of the exponen-

tial and smooth histogram techniques. Then they introduce

a technique based on keeping O(log(w)) snapshots of the
problem using an insertion-only algorithm that allows one

to obtain a constant factor approximation to the problem.

3 A GENERAL APPROACH TO SOLVE
MAXIMIZATION PROBLEMS

Definition 3.1 (Evaluation functions andmonotonic-

ity). Let X and Y be the set of all inputs and solutions for an
optimization problem. A solution Y ∈ Y is feasible for input
X ∈ X if it satisfies the constraints of the optimization problem.
Let f : Y → R≥0 be a function that evaluates the quality of a
solution Y ∈ Y. We focus on maximization problems. We say
that the maximization problem represented by the function f

is monotone if, for every two inputs X ⊂ X ′, if Y is a feasible
solution for X , it is also a feasible solution for X ′.

Notice that the monotonicity implies that for X ⊂ X ′,
we have OPT*(X ) ≤ OPT*(X ′), where OPT*(X ) is the value
of the optimal solution in X . To simplify the notation, we

allow Y to include non-feasible solutions and assume that

f (Y ) = 0 when Y is not a feasible solution.

In the paper, we assume thatw ≥ 2, otherwise, the prob-

lem is trivial. To summarize the data, we use a pair of func-

tions (Z , z). The first function, Z , takes an input X and en-

codes it into a small summary Z (X ), while the second func-

tion, z, decodesZ (X ) and produces a feasible solutionY . This
means that f (z(Z (X )) is the value of the solution found by

the summary algorithm. We allow the summaries to be gen-

eral data structures (we do not restrict their representations

to be subsets of the input). We only need to assume that Z
can be computed in insertion-only streams (i.e., it supports

an insert operation), and z is a (polynomial-time) computable

function of the summary.

To simplify the notation, we assume that X contains all

possible summaries.

Definition 3.2 (Approximate summaries). We say (Z , z)
is a summary for any pair of functions Z : X → X and z :

X → Y. For a maximization problem f , we say the summary
is α-approximate for X if :

f (z(Z (X ))) ≥ α OPT*(X ) (1)

We say a summary is α-approximate (without specifying
any particular X ), if it is α-approximate for every X ∈ X.

To allow for randomization in the summary algorithm, we

say (Z , z) is a randomized summary if the aforementioned

conditions hold on any input with high probability, where

the probability is defined on the space of the random choices

of the algorithm. Whenever clear from the context, we will

call a randomized summary simply a summary.

Definition 3.3 (Space of a summary). We denote the size
of a summary by sZ .

We now present a technique that uses approximate sum-

maries to compute approximately optimal solutions for maxi-

mization problems in the sliding window setting. The general

intuition is to keep two consecutive approximate summaries

for every possible guess of the optimum value, and then use

the summaries to obtain a sliding window algorithm.

For simplicity, we assume that we have access to a stream-

ing α-approximation summary, (Z , z), as well as the mini-

mum,m, and maximum,M , value of a function f . Fix δ > 0

and let Λ = {λ1, λ2, . . .} be a set of thresholds such that

λi+1 = λi (1 + δ ); we will specify the bounds of Λ later. For

each threshold λ ∈ Λ, we maintain a pair of summaries, Aλ
and Bλ , computed as follows.



Initially, each Aλ = Bλ = ∅, and the corresponding sum-

maries are Z (∅). When an element x arrives, we check if the

value of the solution computed by the summary on Bλ ∪ {x}
remains smaller than λ. If so, we simply extend Bλ to Bλ∪{x},
and update the corresponding summary. Otherwise, we reset

Aλ to the current value of Bλ , and set Bλ = {x}. We show

the pseudocode in Algorithm 1.

Function Summaries(X , λ)
Z (Aλ) ← Z (∅); Z (Bλ) ← Z (∅);

foreach x ∈ X do
if f (z(Z (Bλ ∪ {x}))) ≤ λ then

Z (Bλ) ← Z (Bλ ∪ {x});

else
Z (Aλ) ← Z (Bλ); Z (Bλ) ← Z ({x});

end
end
return (Z (Aλ),Z (Bλ))

Algorithm 1: The high level algorithm for maintaining

approximate summaries.

Now we observe some basic properties of our summaries

that will be useful to show our main result.

Lemma 3.4. For a set Aλ , let A+λ be the set Aλ together with
the first element of the corresponding Bλ . The following are
invariants maintained by the algorithm.
(i) Aλ and Bλ are two disjoint consecutive substreams of X ,
(ii) Aλ precedes Bλ , and
(iii) Bλ ends with the current time t and always contains the
last element of the stream.
(iv) When |Aλ | ≥ 1:

f (z(Z (A+λ))) > λ. (2)

(v) When |Aλ | ≥ 2:

f (z(Z (Aλ))) ≤ λ (3)

(vi) When |Bλ | ≥ 2:

f (z(Z (Bλ))) ≤ λ (4)

Proof. The first three points follow from construction.

Equation 2 follows from the fact that Aλ is set to a non-

empty summary only when Bλ ∪ {x} has value > λ, and
this property is maintained thereafter. Equation 3 follows

from the fact that |Aλ | ≥ 2 implies that Aλ has been set as a

copy of a prior Bλ that was not a singleton, and this happens
only if Bλ has value ≤ λ. Equation 4 follows from the same

property. □

So far we have described how to maintain two summaries,

Aλ and Bλ , with the properties in Lemma 3.4 for every thresh-

old λ. Nowwe need to show how to use these two summaries

to provide a solution for an active window.

To do so, we assume to have access to an additional func-

tion h that takes two summaries and an index, and produces

a good summary for the stream starting at the index. Clearly,

if we require h to work in every setting, designing such h
would be equivalent to solving the initial problem. Interest-

ingly, we can show that we need to use such a function only

when Aλ contains a solution of “small” value.

More formally, consider a stream x0,x1,x2, . . . , xa ,xa+1,
. . . , xb . Let A be the sequence x0, . . . ,xa and let B be the se-

quence xa+1, . . . ,xb . LetAλ , Bλ be corresponding summaries.

Finally, for t ∈ [0,a], let At
be the sequence xt ,xt+1, . . . ,xa .

Definition 3.5 (Mergeable summary for maximization

problems). Let f be a monotone function. We say that an α-
approximate maximization problem summary (Z , z) is (α ′, β)-
mergeable for β ≤ 1, if there exists a composer function h :

X × X × Z → X such that for any A,B ∈ X and for any
0 ≤ t ≤ |A|, H = h(Z (A),Z (B), t) verifies
(i) z(H ) is a valid solution for At ∪ B;
(ii) if f (z(Z (A))) ≤ β OPT*(At ∪B), then: (h(Z (A),Z (B), t), z)
is an α ′-approximate summary for At ∪ B.

Note that in (ii), with a slight abuse of notation, we are de-

noting with h(Z (A),Z (B), t) the function that computes the

sketch. Similarly to the previous case to allow for randomiza-

tion in the summary algorithm we define a (α ′, β)-mergeable

randomized summary if the aforementioned conditions hold

on any input with high probability.

We note that we are not providing a general method of

designing the composer function h. For every maximization

problem, one needs to design a tailored function.

To simplify exposition, we use intervals of timestamps

such as [a,b] for a,b ∈ N to refer to the stream of items

appearing between time a and b (inclusive) in order. We

refer toW as the active window of size w , (i.e., for t ∈ N,
W = [max(t −w, 1), t]).

Remark 3.6. For some of the maximization problems such
as subadditive or submodular maximization, the composer
function h defined in Definition 3.5 is very simple. If the solu-
tion of the summary for the first sequence A is small enough
compared to the optimum of the active window At ∪ B, we can
just discard the summary of A and output only the solution for
the summary of B.

However, for the diversity maximization problem, this sim-
ple trick will not work, and we need to provide more involved
mergeable summaries and an actual composer function to ob-
tain the desired approximation algorithms for sliding window
setting.

Before presenting our algorithmic result, we pause to ana-

lyze the requirements of Definition 3.5 in terms of extracting

solutions for suffixes of the first stream. Notice that we never

require in our algorithms to compose with an empty set



B = ∅, however, the Definition 3.5 allows that. This does

not imply that a mergeable summary is able to obtain a so-

lution for any suffix At
of A. The key here is that if B = ∅,

we need to output a good approximation solution only if

f (A, z(Z (A))) ≤ β OPT*(At ), which makes the problem sig-

nificantly simpler (sometimes trivial). For example, note that

if β < α , by monotonicity this condition never happens.

We now present our first algorithmic result. We show

that, given a family of mergeable summaries, it is possible to

obtain a sliding window algorithm that uses only logarith-

mically many summaries.

Let the set of thresholds be Λ := {αm, (1 + δ )αm, (1 +
δ )2αm, . . . (1 + δ )M}.

We run the algorithm presented in Algorithm 2.

Input The stream X , upper and lower boundsm,M ;

δ > 0; the size of the windoww .

Output Solution for the last active windowW .

Phase 1: Consume the stream X in order, maintaining,
in parallel, all the summaries.
Λ← {αm, (1 + δ )αm, . . . , (1 + δ )M};

foreach λ ∈ Λ do
Z (Aλ),Z (Bλ) ← Summaries(X , λ);

end
Phase 2: Extract the solution for the windowW at the
end of X .
t0 ← max(|X | −w, 1);
λ∗ ← max({λ : Aλ ⊊W and |Aλ | ≥ 1});

S1 ← z(Z (A+λ∗ ))
λ′← λ∗(1 + δ );
ifW ∩Aλ′ , ∅ then

H ← h(Z (Aλ′),Z (Bλ′), t0); S2 ← z(H );

else ifW = Bλ′ then
S2 ← z(Z (Bλ′));

else
return S1

end
return argmaxS ∈{S1,S2 } f (S);

Algorithm 2: The pseudocode of our main algorithm.

When asked for a solution for the current active window

W = [t0, t], where t0 = max(t −w, 1), we find the maximum

λ∗ ∈ Λ such that Aλ∗ is a proper subset of the current active

window and it is non-empty (we show that such a λ∗ exists in
Lemma 3.7). Let, A+λ∗ be Aλ∗ combined with the first element

of Bλ∗ , and let S1 = z(Z (A+λ∗ )), be the candidate solution

computed for λ∗.
Now consider λ′ = (1 + δ )λ∗ (we show in Lemma 3.8

that λ′ ∈ Λ): by construction, either Aλ′ is not initialized or

Aλ′ 1W (the case Aλ′ =W is excluded by construction). In

either case, this implies that W ⊆ Aλ′ ∪ Bλ′ .

We now construct a solution S2 as follows, depending on

the particular position ofW :

(i) If W intersects with Aλ′ . Then, we have W = At0
λ′ ∪ Bλ′ .

We set S2 = h(Z (Aλ′),Z (Bλ′), t0).
(ii)W = Bλ′ . Then we set S2 = z(Z (Bλ′)).
(iii)W is a suffix of Bλ′ . In this case we show that S1 is a good
solution, so we do not use S2.
Finally, the algorithm outputs the solution of maximum value

between S1 and S2.
Before proving our main result, we show that the algo-

rithm above is well defined.

Lemma 3.7. There exists a λ∗ ∈ Λ such that Aλ∗ is non-
empty and Aλ∗ ⊊W .

Proof. This statement is true for λ = αm. Observe that

the function has a value ≥ m on any non-empty subset of

the stream by assumption (asm is the minimum value of the

function); therefore, any α-approximate summary computed

over any subset of the stream has value at least αm, so the

value returned by the summary Bλ is at least αm every time

the summary consumes one element of the stream. As a

result, the algorithm resetsAλ and Bλ at every step, such that
Aλ contains the second to last item observed, which is part

of the sliding window by assumption ofw ≥ 2. Notice that

this property continues to hold any other time the summary

is reset. Finally, notice that the last element of the stream is

always in Bλ , so Aλ is a proper subset of W. □

Lemma 3.8. Let λ∗ defined as in Algorithm 2, and λ′ =
(1 + δ )λ∗. Then λ′ ∈ Λ.

Proof. Clearly if Aλ∗ ⊂ W and |Aλ∗ | ≥ 1, then A+λ∗ ⊆ W

as well. Moreover, by Equation 2 and monotonicity of f :

λ∗ < f (z(Z (A+λ∗ ))) (5)

Notice that this property cannot hold for λ∗ = M(1+δ ), as
this would imply that f (z(Z (A+λ∗ ))) > M(1 + δ ) > OPT*(W).

Therefore λ′ ∈ Λ. □

We are now ready for the main result.

Theorem 3.9 (Sliding window algorithm for maxi-

mization problems). Let (Z , z) be an α-approximate maxi-
mization problem summary and let it be (α ′, β)-mergeable for
amonotone function f . Leth be its composer function. The algo-
rithm described above computes amin(α ′,

α β
1+δ )-approximation

to the maximization f in space O
(
sZ log

1+δ
M
αm

)
.

Proof. First we consider the quality of the solution ob-

tained by S1. Suppose that λ
∗ ≥

α β
1+δ OPT*(W). Then, Equa-

tion 5 implies that S1 = z(Z (A+λ∗ )) is an
α β
1+δ approximation

to the optimum solution.

For the remainder of the proof, assume otherwise that

λ∗ <
α β
1+δ OPT*(W). This is equivalent to saying that λ′ <



αβ OPT*(W). We will show that in this case S2 gives an

min(α ,α ′)-approximate solution.We have to consider 3 cases:

(1) W intersects with Aλ′ and hence W ⊆ Aλ′ ∪ Bλ′ . Note
that |A′λ | ≥ 2.

1
In this case we use the function h

guaranteed by the mergeable summaries. We have:

β OPT*(W) > αβ OPT*(W) > λ′ ≥ f (z(Z (Aλ′)))where

the third inequality follows by the invariant of the algo-

rithm. Therefore, the precondition for mergeable sum-

maries holds, and the result is an α ′-approximation.

(2) W = Bλ′ . In this case, considering z(Z (Bλ′))will lead to

anα ≥
α β
1+δ -approximation sinceZ is anα-approximate

summary.

(3) W ⊊ Bλ′ Finally, we show that this case is not pos-

sible. Since λ′ < αβ OPT*(W), it must be that λ′ <
α OPT*(W). However, in this case, since Z is an α-
approximate summary, we know that: α OPT*(W) ≤

f (z(Z (Bλ′))) ≤ λ′ < α OPT*(W), which is a contradic-

tion.

Therefore, the best of the two solutions is guaranteed to

give at least a min(α ′,
α β
1+δ )-approximation.

To obtain the space bound, observe that there are log
1+δ (

M
αm )

values of λ to consider, and for each of them our algorithm

computes three sketches each of size less than sZ . Hence, the
total space complexity is O(sZ log

1+δ
M
αm ). □

4 EXAMPLES OF APPLICATIONS
We now apply our new technique to some prototypical prob-

lems.

4.1 Subadditive Function Maximization
In this subsection, we apply our new technique to subaddi-

tive optimization under downward closed constraints. Let

V be a ground set: a set function д : 2
V → ℜ is subaddi-

tive if д(Y1 ∪ Y2) ≤ д(Y1) + д(Y2), ∀Y1,Y2 ⊆ V . A set system

I ⊂ P(V ), where P(V ) is the powerset of V , is downward
closed iff I ∈ I =⇒ I ′ ∈ I ∀I ′ ⊂ I . We seek to maximize

the function д subject to a downward closed constraint (i.e.,

we seek to find maxI ∈I д(I )). A special and widely studied

case of a downward closed set system is the cardinality con-

straint (i.e., I = {I ⊂ V | |I | ≤ k} for some k ∈ Z+). Let д
be a non-negative and subadditive set function whose non-

zero co-domain is in [m,M]. We show that if there exists a

α-approximate summary using space sZ for maximizing д
subject to a downward closed constraint then there exists

a sliding window algorithm for maximizing д that gets a

α 2

2(1+δ ) -approximation using spaceO(sZ log
1+δ

M
mα ) for every

constant δ > 0.

1
Note that |Aλ′ | , 1, otherwise Aλ′ ⊊ W which would contradict the

definition of λ.

We reformulate the problem in the following natural way.

We assume that the points from V arrive one at a time,

and that at time t , we are allowed to output sets in I ∩

P({x1, . . . ,xt }). Given a solution Y to the stream X = {x1,
. . . , xt }, we let f (Y ) = д(Y ), if Y ∈ I ∩ P(X ), and f (Y ) = 0

otherwise. Notice that f is non-negative and bounded in

[m,M]∪ {0}. Notice also that this implies that the function f
satisfies our monotonicity property, OPT*(X ′) ≤ OPT*(X ′)
whenever X ⊆ X ′, even if д is not monotone, simply by the

monotonicity of P({x1, . . . ,xt }).
Note that, for general subadditive functions, it is not clear

how to compute an α-approximate summary, even in the

specific case of cardinality constraints; however, whenever

such a summary exists, we show that it is possible to modify

it to get a (α
2
, α
2
) mergeable summary. We actually prove

a slightly stronger lemma that works for any C-“weakly”
subadditive function д; that is, any function such that д(Y1 ∪
Y2) ≤ C(д(Y1) + д(Y2)) , ∀Y1,Y2 (the subadditive case is the
specific case ofC = 1). We say that f isC-weakly subadditive
if it models a maximization problem for a function д that is

C-weakly subadditive.

Lemma 4.1. Let f be a bounded and C-weakly subadditive
function subject to downward closed constraints. If there exists
an α-approximate summary using space sZ for maximizing
f , then for the same problem, there exists also a ( α

2C ,
α
2C )-

mergeable summary using the same space.

Proof. Recall that function f has an α-approximate sum-

mary sowe know that there exist (z,Z ) such that f (z(Z (X ))) ≥
α OPT*(X ), ∀X ∈ X.

Now, fix β = α
2C : we need to show that if f (z(Z (A))) ≤

α
2C OPT*(At∪B), then there existh such that (h(Z (A),Z (B), t), z)
is an α ′-approximate summary forAt ∪B. We show that it is

enough to defineh(Z (A),Z (B), t) = Z (B). In fact, f (z(Z (B))) ≥
α OPT*(B) ≥ α

C (OPT*(A
t∪B)−C OPT*(At )) ≥ α

C (OPT*(A
t∪

B) −C OPT*(A)) ≥ α
C

(
OPT*(At ∪ B) −

Cf (z(Z (A)))
α

)
which is

≥ α
C (OPT*(A

t ∪ B) − 1

2
OPT*(At ∪ B)) ≥ α

2C OPT*(At ∪ B).
Furthermore, note that (h(Z (A),Z (B), t), z) is a valid so-

lution of At ∪ B for the downward closed property of the

constraints.

So by fixing h(Z (A),Z (B), t) = Z (B) we get a ( α
2C ,

α
2C )-

mergeable summary. □

From Lemma 4.1 and Theorem 3.9 we obtain the following

result:

Corollary 4.2. Let f be a bounded and C-weakly subad-
ditive function, if there exists an α -good summary using space
sZ for maximizing f under downward closed constraints, then
for the same problem, there exists a sliding window algorithm
that computes a α 2

2C(1+δ ) -approximation for f that uses space
O(sZ log(1+δ )

M
m ), for any constant δ > 0.



By using the streaming algorithm of Badanidiyuru et al. [6]

that gives a ( 1
2
−ϵ)-approximate summary using spaceO(k log M

m ),

we get the following corollary.

Corollary 4.3. Let f be a monotone, bounded and sub-
modular function subject to cardinality constraints. Then there
exists a sliding window algorithm that computes a 1

8(1+δ ) -
approximation for f that uses space O(k(log(1+δ )

M
m )

2), for
any constant δ > 0.

Similarly, it is possible to show a sliding window O(1/p)-
approximation algorithm for non-monotone submodular op-

timization under p-Matroid constraint as in [20]. Using the

streaming algorithm of Chekuri et al. [19], it is also possible

to get a sliding window O(1/p)-approximation algorithm

for non-monotone submodular optimization under the more

general class of p-Matchoid constraints.

We note that the previous bound does not improve on pre-

viously known results [20, 24]. Nevertheless, in Section 5, we

show how to strengthen the approach to get tighter bounds

on a few maximization problems, including submodular op-

timization
2
.

4.2 Diversity Maximization
In diversity maximization problems, we are given a streamX
of points in a metric space, and we are asked to find a subset

Y ⊂ X of k points with maximum diversity. The diversity of

a set Y , div(Y ), depends on the distances between the points

in Y . Indyk et al. [30] studied multiple variants of diversity

each with its own div function, as explained in the second

column of Table 2. We also list the approximation ratio and

space of our new streaming and sliding window algorithms

for each of these problems in Table 2 (note that all previously

known streaming algorithms use space Ω(
√
W ) [30] or are

limited to certain special cases like spaces with bounded dou-

bling dimension [17]). In constructing the summaries, we

sometimes need a centralized algorithm for solving the diver-

sity maximization problems. Various constant approximation

centralized algorithms exist for each of these problems in

the literature; any of the algorithms can be used into our

construction. The parameter ζ denotes the approximation

factor of the centralized algorithm for the relevant diversity

objective. The solution evaluation function f Y ) is defined,
as before, to be div(Y ) for a feasible solution Y of at most k
points and 0 otherwise.

Diversity of a size k subset Y is always the sum of some

number of distances, (i.e., k(k − 1) pairwise distances in

Remote-clique, k − 1 distances in Remote-tree, 1 distance in

2
Note that the algorithm presented in Section 5 is not problem-specific, but

it is as general as the method presented in the previous section. We prefer

to present the simpler method in the main body of the paper simply for

clarity of exposition.

remote-edge, etc). To simplify the proofs, we normalize the

diversity function, and instead consider the average distance.

Definition 4.4. Let div′(Y ) be 1

nk
div(X ), where nk is the

number of pairwise distances that are summed in div. In this
section, we use f (Y ) = div

′(Y ) as our objective function for a
feasible solution Y .

Remark 4.5. Any α -approximate solution Y for div′ is also
an α-approximate solution for div, because the rescaling pa-
rameter is the same for Y and for the optimum. Hence, from
now on, we only work with div

′.

We start by stating two useful properties and prove that

our problems satisfy them.

(1) Given two sets of points Y = {y1, . . . ,yk }, and Y ′ =
{y ′

1
, . . . ,y ′k }, if d(yi ,y

′
i ) ≤ µ for each i , then | f (Y ) −

f (Y ′)| ≤ 2µ;
(2) Given Y = {y1, . . . ,yk }, if d(yi ,yj ) ≥ µ for each i < j,

then f (Y ) ≥ µ;

Lemma 4.6. All the diversity problems in Table 2 satisfy
Properties 1 and 2.

Proof. We focus on the mapping from Y to Y ′ that trans-
forms eachyi toy

′
i . Every point in this transformation moves

by at most µ distance; therefore, by triangle inequality, the

distance between any pair of points in Y is at most the dis-

tance of their projections in Y ′ minus 2µ. So the average

distance of any subset of points in Y is also at most the

average distance of the projected subset in Y ′ minus 2µ.
Therefore, f (Y ′) ≥ f (Y ) − 2µ. Similarly, one can show that

f (Y ) ≥ f (Y ′) − 2µ which concludes the proof of Property 1.

The value of f (Y ) is the average of some subset of dis-

tances, and each distance is at least µ. Therefore, f (Y ) is also
at least µ, which proves Property 2. □

4.2.1 Solving remote-edge, remote-tree, remote-cycle, remote
t-trees, remote t-cycles.

Constructing approximate summary. Given lower and up-

per bounds m and M , we maintain a set of Iµ points with

minimum pairwise distance of at least µ for each µ in {m, (1+
ϵ)m, . . . ,M}. We initialize each set Iµ to ∅ and process the

streamX . For every new arriving point x and every µ, if there
are fewer than k points in Iµ and the minimum distance of x
to points in Iµ is at least µ, we insert x to Iµ .

This way, for each µ, either we have k points at distance µ
from each other, and by Property 2 we find a solution with

value at least µ, or we can move all points by at most µ so that
they coincide with points of the sketch, then, by Property 1,

we find a solution with value at leastOPT*(X )−2µ. By choos-
ing the proper value of µ (as we will show in Lemma 4.7),

in both cases we find a constant approximation of OPT*(X ).
So outputting the set Iµ with the highest diversity yields a



Name Diversity Function App. str Space str App. SW Space SW

Remote-edge minu,v∈Y d(u, v) 1/5 − ϵ O(k log∆) ζ/5 − ϵ O(k log
2 ∆)

Remote-clique

∑
u,v∈Y d(u, v) ζ/5 − ϵ O(k2 log∆) ζ/5 − ϵ O(k2 log2 ∆)

Remote-tree weight of minimum spanning tree of Y 1/5 − ϵ O(k log∆) ζ/5 − ϵ O(k log
2 ∆)

Remote-cycle weight of minimum TSP tour of Y 1/5 − ϵ O(k log∆) ζ/5 − ϵ O(k log
2 ∆)

Remote t -trees minimum weight of t trees spanning Y 1/5 − ϵ O(k log∆) ζ/5 − ϵ O(k log
2 ∆)

Remote t -cycles minimum weight of t cycles spanning Y 1/5 − ϵ O(k log∆) ζ/5 − ϵ O(k log
2 ∆)

Remote-star minu∈Y
∑
v∈Y d(u, v) ζ/5 − ϵ O(k2 log∆) ζ/5 − ϵ O(k2 log2 ∆)

Remote-bipartition minY=Y1∪Y2, |Y1 |=⌊ k2 ⌋
∑
u∈Y1

∑
v∈Y2 d(u, v) ζ/5 − ϵ O(k2 log∆) ζ/5 − ϵ O(k2 log2 ∆)

Remote-pseudoforest

∑
u∈Y minv∈Y−{u} d(u, v) ζ/5 − ϵ O(k2 log∆) ζ/5 − ϵ O(k2 log2 ∆)

Remote-matching min weight of a perfect matching (for even k ) ζ/5 − ϵ O(k2 log∆) ζ/5 − ϵ O(k2 log2 ∆)

Table 2: The summary of results for Diversity Maximization problems under different metrics for diversity. Pa-
rameter ζ denotes the approximation factor of the offline algorithm for the relevant diversity objective and δ is
the ratio between the minimum and the maximum distance in the dataset.

constant factor approximation for the diversity maximiza-

tion problem in the streaming setting. Therefore, we can

define the summary Z (X ) to be the union of all Iµ sets and
the solution finder function z(Z (X )) to be the maximizer set

Iµ to be argmaxIµ f (Iµ ).

Mergeable summary. Weneed to supplement our summary

with a set of backup points to recover selected points in Iµ in
case they expire (fall out of sliding window). We denote the

ith point in Iµ by Pµ,i . We aim to find a representative point

P ′µ,i for Pµ,i such that the distance between them is at most µ.

We also want the representative points of set Iµ to be distinct,
(i.e., we need |Iµ | distinct representative points for points in
Iµ ). However, it is possible for a point P

′
to represent two

points from two different sets, Iµ and Iµ′ .
We find and maintain representative points as follows.

Whenever a new point x is added to set Iµ , we make x its own

representative point. Otherwise, we check to see whether x
is at distance of at most µ to any point in Iµ . If such a point

Pµ,i exists, we make x the new representative point of Pµ,i ;
i.e., P ′µ,i is set to x (if there are multiple options, we select

one arbitrarily).

Now, let us define the function h used to compose two

summaries Z (A) and Z (B) of two streams given time t (start
of the active window). For each µ, the summaries of A and B
each have a Iµ set. We call them Iµ (A) and Iµ (B). Let I

′
µ (A) and

I ′µ (B) be the set of representative points for these two sets.

We define Hµ to be the union of Iµ (B) and the representative
points of I ′µ (A) that arrive at or after t . Clearly, all points in
Hµ are in the active window. Let ALG be some centralized ζ -
approximation algorithm for our diversity problem. Function

h returns ALG(Hµ∗ ), where ALG(X ) is the solution of ALG
on input X , and µ∗ = argmaxµ f (ALG(Hµ )).

Lemma 4.7. The summary (Z , z) defined above is ( 1
5
− ϵ)-

approximate. Moreover, it is ( ζ
5
− ϵ, 1

5
− ϵ)-mergeable when

accompanied by the composer function h defined above. Here,

ζ is the approximation factor of the centralized algorithm ALG
used to construct the function h.

Proof. We start by proving the ( 1
5
−ϵ)-approximation for

an arbitrary stream X . Recall that we refer by OPT*(X ) to
the value of the optimum on X and by Y (X ) to the optimal

solution. The set of µ values that we try ensures that there

exists a µ ′ such that
1

5
OPT*(X ) ≤ µ ′ ≤ 1

5
(1 + ϵ)OPT*(X ),

for which we maintain set Iµ′ . If there are k points in Iµ′ ,
this set itself has k points, and its diversity is at least µ ′

by Property 2. Therefore, we have a
1

5
approximation by

applying µ ′ ≥ 1

5
OPT*(X ).

Otherwise, Iµ′ has fewer than k points, which means that

every point in the stream has distance at most µ ′ to some

point in Iµ′ . Let OPT be the optimum solution of stream X .
We map every point in OPT to its closest point in Iµ′ . Note
that this is a many-to-one mapping. Let OPT

′
be the multi-

set of projected points. By Property 1, f (OPT′) is at least
f (OPT(X ))−2µ ′. We want to upper bound f (OPT′) in terms

of f (Iµ′).
For remote-edge, if there are duplicate points in OPT

′
,

f (OPT′) is zero, which makes the claim trivial. Otherwise,

OPT
′
should be the same as Iµ′ , as they both have k distinct

points, and the former is a subset of the latter.

For the other objectives (remote-tree, remote-cycle, remote

t-trees, remote t-cycles), we remove duplicate points ofOPT
′

to achieve the setOPT
′′
. This operation does not decrease the

diversity, so f (OPT′′) is also at least f (OPT(X ))−2µ ′. On the
other hand, OPT

′′
is a subset of Iµ′ . Therefore, f (OPT

′′) is at

most 2f (Iµ′), since any tree or tour spanning a set of points

Q can be transformed to a tree or tour spanning Q ′ ⊆ Q
with total distance of, at most, twice the original one. This

can be done by doubling all the edges in the tree or tour

and traversing over the Eulerian tour of the doubled set of

edges. We conclude that: f (Iµ′) ≥
f (OPT′′)

2
≥

f (OPT′)
2

, which

is, ≥
f (OPT(X ))

2
− µ ′ ≥ (0.3 − ϵ)OPT*(X ), which concludes

the first claim of this lemma.



For mergeability, we show that, whenever f (z(Z (A))) ≤
( 1
5
− ϵ)OPT*(At ∪ B), we have f (h(Z (A),Z (B), t)) ≥ ( 1

5
−

ϵ)OPT*(At ∪ B). We know that the solution produced by

composer function h(Z (A),Z (B), t) is ALG(Hµ∗ ), where µ
∗ =

argmaxµ f (ALG(Hµ )). We note that in this particular case,

composer functionh returns a feasible solution, and therefore
we can directly evaluate it in the term f (h(Z (A),Z (B), t))
without applying a decoder z.

The solution z(Z (A)) is the solution of summary on A
which is themaximizer ofmaxµ f (Iµ (A)). In particular, f (z(Z (A)))

is at least f (Iµ′′(A)), where µ
′′
is chosen such that

1

5
OPT*(At∪

B) ≤ µ ′′ ≤ 1

5
(1 + ϵ)OPT*(At ∪ B), and OPT*(At ∪ B) is the

optimum value of the active window At ∪ B.
Since f (z(Z (A)) ≤ ( 1

5
− ϵ)OPT*(At ∪ B), we also have

f (Iµ′′(A)) ≤ (
1

5
− ϵ)OPT*(At ∪ B). Therefore, Iµ′′(A) cannot

have k points, otherwise, its value will be at least µ ′′, contra-
dicting the upper bound on it by definition of µ ′′.

We now lower bound the value of the composed solution,

f (ALG(Hµ∗ )). By definition of µ
∗
and approximation factor of

ALG, we have f (ALG(Hµ∗ )) ≥ f (ALG(Hµ′′) ≥ ζ OPT*(Hµ′′).

So, we focus on OPT*(Hµ′′).

If Iµ′′(B) has k points, f (Iµ′′(B)) will be at least µ ′′ ≥
OPT*(At∪B)

5
. The claim is proved by noting that Iµ′′(B) is a

subset of Hµ′′ , and therefore OPT*(Hµ′′) ≥ f (Iµ′′(B)).
Now, we can focus on the case that Iµ′′(A) and Iµ′′(B) have

strictly fewer than k points. We show that every point x in

the active window has distance of at most 2µ ′′ to some point

inHµ′′ (the union of Iµ′′(B) and points in I
′
µ′′(A) that arrive at

or after t ). Since Iµ′′(B) has fewer than k points, every point

in B has distance of at most µ ′′ to some point in Iµ′′(B). For
a point x ∈ At

, we have two options. Either x is in Iµ′′(A),
which means its representative is present in Hµ′′ . Or, if x
was not added to Iµ′′(A), it was because x had distance of at

most µ ′′ to some point in y ∈ Iµ′′(A). The representative of
y is present in Hµ′′ and has distance of at most 2µ ′′ to x by

triangle inequality.

Therefore, we can move the points of optimum solution of

At ∪ B each by at most 2µ ′′ such that they are all present in

Hµ′′ . This transformation cannot decrease the value of opti-

mum by more than 4µ ′′ (similar to the first part of the proof).

We conclude thatOPT*(Hµ′′) is at leastOPT*(A
t ∪B)−4µ ′′ ≥

1−4−4ϵ
5

OPT*(At ∪ B). Combining this with the centralized

approximation factor ζ yields an overall approximation of

at least
ζ
5
− ϵ , completing the proof. □

Corollary 4.8. There is a ζ
5
-approximation algorithm in

sliding window for remote-edge, remote-tree, remote-cycle, re-
mote t-trees, remote t-cycles. The space used is O(k log2 ∆).

4.2.2 Solving remote-clique, remote-star, remote-bipartition,
remote-pseudoforest, remote-matching. Wedesign a summary

that is very similar to the one in Subsection 4.2.1. The main

difference is in the number of representative points we keep.

Instead of keeping just one representative point for selected

point Pµ,i , we keep up to k of them.

Constructing approximate summary. Like before, we main-

tain a set Iµ of at most k points for each µ. Whenever a new

point x arrives, if its distance to points Iµ is at least µ, we
add it to Iµ . Otherwise, we find the first (based on arrival

time) point y ∈ Iµ whose distance to x is at most µ. We add

x to the set of representatives of y, and if there are already

k representatives for y, we delete the most outdated (with

the earliest arrival time) representative and replace it with x .
Like before, for a fixed µ, the representative sets are disjoint.
The summary Z consists of all sets Iµ and the representatives
of their points. The solution finder function z returns the

maximizer of maxµ f (Iµ ).

Mergeable summary. We defineHµ to be the union of Iµ (B)
and all representative points I ′µ (A) that arrive at or after time

t . Function h runs some ζ -approximation centralized algo-

rithm ALG on each Hµ and returns the highest diversity

solution (the maximizer ofmaxµ f (ALG(Hµ ))). We note that

with this definition of composer function h, it returns a fea-
sible solution, and therefore we can directly evaluate it via

function f without applying any decoder z.

Lemma 4.9. The summary (Z , z) defined above is ( ζ
5
− ϵ)-

approximate for diversity maximization problems: remote-
clique, remote-star, remote-bipartition, remote-pseudoforest,
and remote-matching. Moreover, the summary (Z , z) is ( ζ

5
−

ϵ, 1
5
−ϵ)-mergeable for these problems when accompanied with

the composer function h and centralized algorithm ALG de-
fined above. Here, ζ is the approximation factor of centralized
algorithm ALG.

Proof. The proof of the first claim is identical to the first

part of the proof of Lemma 4.7. Recall that the second claim is

essentially proving f (h(Z (A),Z (B), t)) ≥ ( 1
5
−ϵ)OPT*(At∪B)

whenever we have f (z(Z (A)) ≤ ( 1
5
− ϵ)OPT*(At ∪ B).

Let µ be such that 1

5
OPT*(At∪B) ≤ µ ≤ 1

5
(1+ϵ)OPT*(At∪

B). Identical to the proof of Lemma 4.7, we can assume that

Iµ (A) and Iµ (B) both have strictly fewer than k points.

We assign points in the optimum solution of At ∪ B to

selected centers in Iµ (A) and Iµ (B). Each optimum point x
that is in A as well is assigned to the first (earliest arrival

time) point in Iµ (A) with distance of at most µ from x . We

perform a similar assignment of optimum points in B.
If L optimum points are assigned to a point y in Iµ (A)

(the claim for Iµ (B) is identical), all these L points were valid

candidates of being a representative for y. Therefore, y has

at least L representative points in the active window. So

we can map each optimum point in x to a distinct point in

the summary Hµ with a distance of at most 2µ. Similar to



the proof of Lemma 4.7, the rest of the claim follows by a)

property 1, b) the fact that diversity of any size k subset of

Hµ is a lower bound on its optimum value OPT*(Hµ ), and c)

ALG is a ζ approximation algorithm. □

5 REFINED APPROACH FOR
MAXIMIZATION

We now present a stronger, more complex technique for

maximization problems that allows for tighter bounds. The

main goal of this section is to show that it is possible to

trade-off space at the cost of some additional complexity.

In the refined method presented in this section, we guess

the value of the optimum solution and then run a copy of

the summary algorithms for each guess, λ. In this way, we

can reduce the total space used by our algorithms by a log∆
factor.

The main idea behind the refined approach is to allow the

algorithm to select the optimal λ to optimize the approxima-

tion factor and to reduce the memory used by a logarithmic

factor. In fact, toward the end of the section, we will show

that the new approach can be used to improve the state-

of-the-art algorithm for submodular maximization under

cardinality constraints.

In this section, we use the same notation as before for the

evaluation function f encoding the maximization problem

and its constraints. We assume that the function is monotone,

as defined above.

Definition 5.1 (Good summary for maximization prob-

lems). Fix λ ∈ Λ. Let Zλ : X → X and zλ : X → Y. A
summary is (λ,α ,δ )-good if:
Whenever there exists a X ′ ⊆ X and Y ∈ Y, such that Y is

a feasible solution of X ′, with value λ ∈ [f (Y ), (1 + δ )f (Y )];
then we have:

f (zλ(Zλ(X ))) ≥ αλ.

The key to our definition is that the quality of the solution

only needs to be approximately optimal w.r.t. λ when there

is a solution of value comparable to λ in any subset of X .
Note that we do not require any guarantee on the quality of

the solution returned by the summary when the value of λ
is significantly different from that of any feasible solution of

any subset of X .

Definition 5.2 (Good family of summaries for maxi-

mization problems). Let (Z , z)λ be a family of summaries
for a maximization problem f for every λ ∈ R≥0. We say that
the family is an (α ,δ ) good family of summaries for the prob-
lem f if for every λ and for a stream X , (Zλ , zλ) is a (λ,α ,δ )
good summary for X .

We now give the adapted definition of strong mergeable
summaries.

Definition 5.3 (Strong mergeable summary). We say
that a family of (α ,δ ) good summaries is (α ′,δ ′, β)-mergeable
if there exists a composition function h : X ×X ×Z→ X such
that for any λ,A,B, t , and H = h (Aλ ,Bλ , t): if f (zλ(Aλ)) ≤

β · λ, then H is a (λ,α ′,δ ′) good summary of At ∪ B.

Also in this case, while we do not explicitly forbid the

composition with Bλ = ∅, the definition does not require us

to be able to extract arbitrary suffixes. In fact, if α > β , it is
easy to see that by applying the composition with an empty

set, then the condition f (zλ(Aλ)) ≤ β · λ is not satisfied

whenever λ is close to the value of a feasible solution of At
.

We now show that, given a family ofmergeable summaries,

it is possible to obtain a sliding window algorithm that uses

only logarithmically many summaries. Also in this algorithm,

for every λ, we will keep only three summaries for intervals

Aλ ,A
+
λ , and Bλ .

Theorem 5.4 (Tighter sliding window algorithm for

maximization problems). Let (Z , z)λ be a (α ,δ )-good family
of summaries and let (Z , z)λ be (α ′,δ ′, β)-mergeable where
β < α . Let δ0 = min(δ ,δ ′) and let α0 = min(α ′, β). There
exists a sliding window algorithm that given m,M and the
stream X preserves a α0-approximation of a maximization
problem f in space O

(
sZ · log1+δ0

M
m

)
.

Proof. As before, let Λ′ := {m, (1 + δ0)m, (1 + δ0)
2m, . . . ,

M(1+ δ0)}. For each λ ∈ Λ
′
, we maintain at all time (λ,α ,δ )-

good summaries Aλ ,A
+
λ and Bλ almost as in Algorithm 1. At

any timewemaintain the following invariants:Aλ and Bλ are
intervals for which we keep summaries that have processed,

respectively, the items from the stream appearing in two

disjoint consecutive intervals of timesteps Aλ = [tλ,0, tλ,1]
and Bλ = [tλ,1+1, t]with the second interval ending with the
last item (the first interval may be empty, in which case the

associated summary Z (Aλ) is empty). Moreover, we preserve

at all times that f (z(Z (Aλ))) ≤ βλ (unless Aλ has size one

and it contains a single element of value > βλ) and either

f (z(Z (Bλ))) ≤ βλ or the second interval contains a single

element of value > βλ. Finally, unless the first interval is

empty, we ensure that f (z(Z (A+λ)) is larger than βλ. Notice
that it is always possible to preserve the previous invariants

using Algorithm 1 by substituting ≤ λ with ≤ βλ in the

condition of the first if statement at line 4.

Now, whenever we are asked for a solution for the current

active windowW = [max(t−w, 1), t], we compute a series of

pairs of candidate solutions Yλ and candidate summaries Xλ ,

one for each λ ∈ Λ′ that respects some properties outlined

below, and later we output the one with larger value among

the ones computed. For each λ, we have four cases, depending
on the position of the intervals associated to λ:



• Case 1: The active window is exactly coincident with

the second interval. We set Xλ = Z (Bλ) and set Yλ =
zλ(Xλ).

• Case 2: The two intervals are both non-empty subsets

of the active window. Then we use Xλ = A+λ , and
z(Z (A+λ)) as a solution.
• Case 3: The active window intersects both intervals,

and the first interval contains elements not in the ac-

tive window. We use h to obtain a good solution by

analyzing the summary Xλ = h(Z (Aλ),Z (Bλ), t) and
its associated solution.

• Case 4: Finally, if the active window is strictly con-

tained in the second interval, we ignore this λ (we will

show later it is not needed), and Yλ is not set.

Let λ∗ be such that λ∗ ∈ [OPT*(W), (1+δ0)OPT*(W)]∩Λ
′
;

we know that such lambda exists by construction. The main

idea of the proof is to lower-bound the value of f (Yλ∗ ). We

now show that the solution output is an α0-approximation.

We consider the four cases.

In case 1, we provide an α ≥ α0-approximation, as we

are using a (λ∗,δ ,α)-good summary on W, so there exists a

solution of value close to λ∗, and the summary will output a

solution of value at least αλ∗ ≥ α0 OPT*(W ).
Now consider case 2. Here, by construction we know that

f (Yλ∗ ) ≥ βλ∗ ≥ α0 OPT*(W ).
For case 3, it is enough to notice that we are composing

a (λ∗,α ,δ )-good summary with value ≤ βλ∗ with another

(λ∗,α ,δ )-good summary and a start time inside the first sum-

mary interval corresponding to the beginning of the active

window. Hence the output summary X ∗λ is a (λ
∗,α ′,δ ′)-good

summary of the active window [max(t −w, 1), t]. So again

we get an α0-approximation.

For case 4, we show that this cannot happen for λ∗ as
β < α . In fact, in this case we know that Bλ∗ is a (λ

∗,α ,δ )-
good summary with value ≤ βλ∗. But Bλ∗ needs to output

a solution of value ≥ αλ∗ > βλ∗ when computed over a

superset of W, so this gives a contradiction.

Finally, note that our algorithm requires us to compute

O(log
1+δ0 (

M
m ))many summaries, each of size less than sZ , so

the total space is O(sZ log
1+δ0

M
m ). □

Note that the summaries constructed are independent of

the size of the active window (in contrast, for example, to

the smooth histogram technique). Only the post-processing

uses the valuew to obtain the solution. This means that the

algorithm preserves an approximate solution for anywindow

size at all time.

Now, we explore an applications of our more refined ap-

proach for submodular maximization with cardinality con-
straints. As in Section 4.1, we write f (Y ) = д(Y ) for a sub-
modular function д whenever Y is a valid solution (i.e., in

the case of a cardinality constraint k , when |Y | ≤ k). Recall

that a function д is submodular if for each X1 ⊆ X2 and for

each x ∈ X \X2, д(X1 ∪ {x}) − д(X1) ≥ д(X2 ∪ {x}) − д(X2).

Since f is determined by д, as long as the solution returned

is feasible, to simplify the notation, we are concerned with

optimizing д.
In the following, we improve all previous results by defin-

ing a ( 1
3
−δ ,δ , 1

3
−δ )-mergeable summary that uses spaceO(k)

for monotone submodular maximization under cardinality

constraints. Consequently, we obtain a ( 1
3
−δ )-approximation

in sliding window that uses space O(k log
1+δ

M
n ).

Our summary function Zλ maps a stream of elements X
into a feasible solutionYλ (i.e., a subset of size ≤ k). When we

receive the next element xt , we add it to the current solution
Yλ if Yλ has < k elements and д(Yλ ∪ {xt }) − д(Yλ) > c λk (c
will be chosen later). The function zλ is simply the identity,

and will therefore be omitted in the rest of the proof. We

now show our main lemma (whose proof is similar in spirit

to the proof in [24])

Lemma 5.5. The summary Zλ is (λ, min(c, 1−c(1+δ )), δ )-
good.

Proof. Suppose there exist X ′ ⊆ X and Y ∈ Y such that

λ ∈ [f (Y ), (1+δ )f (Y )] and Y is a valid solution forX ′, other-
wise the proof is trivial. If our summary contains k elements,

then д(Yλ) ≥ cλ. Otherwise, let Y = {y1, . . . ,yℓ}, where
ℓ ≤ k : for each yi , either yi ∈ Yλ or, when we processed

yi , the old solution Y ′λ verified д(Y ′λ ∪ {yi }) − д(Y
′
λ) < c λk .

Since Y ′λ ⊆ Yλ , by submodularity, this means that д(Yλ ∪

{y1, . . . ,yi−1} ∪ {yi }) − д(Yλ ∪ {y1, . . . ,yi−1}) < c λk .
We conclude that:

д(Y ) ≤ д(Yλ ∪ Y )

= д(Yλ) +
ℓ∑
i=1

д(Yλ ∪ {y1, . . . ,yi }) − д(Yλ ∪ {y1, . . . ,yi−1})

≤ д(Yλ) + cλ

≤ д(Yλ) + c(1 + δ )д(Y )

Hence, д(Yλ) ≥ д(Y )(1 − c(1 + δ )) ≥ λ(1 − c(1 + δ )). □

Lemma 5.6. The family of summaries {Zλ} is (min(c, 1 −
2c(1 + δ )),δ , c

1+δ )-mergeable.

Proof. Let Aλ be the summary of A and Bλ be the sum-

mary of B, we defineh(Aλ ,Bλ , t) = Bλ . We need to prove that

for any λ,A,B, t , if д(Aλ) ≤
c

1+δ λ, then Bλ is a (λ,α
′,δ )-good

summary with α ′ = min(c, 1 − 2c(1 + δ )).
In other words, if there exist X ′ ⊆ At ∪ B and Y ∈ Y such

that Y is a feasible solution of X ′ and λ ∈ [f (Y ), (1+δ )f (Y )],
we want to show that д(Bλ) ≥ min(c, 1 − 2c(1 + δ ))λ. Now,
suppose the condition is true, as the other case is trivial.

First, if Bλ has at least k elements, д(Bλ) ≥ cλ, and we

are done. Hence, we can assume that Bλ has < k elements.



Furthermore, д(Aλ) ≤
c

1+δ λ < cλ by assumption, and conse-

quently Aλ has < k elements.

Let Y := {a1, . . . ,ai ,b1, . . . ,bl−i }, l ≤ k , where aj ∈ At

and bj ∈ B. As in the previous proof, д({a1, . . . ,ai }) ≤
д({a1, . . . ,ai } ∪Aλ) ≤ д(Aλ) + cλ

i
k ≤ cλ( 1

1+δ +
i
k ) ≤ cλ(1 +

i
k ) ≤ c(1 + i

k )(1 + δ )λ. Similarly, д({b1, . . . ,bl−i }) ≤ д(Bλ) +

c l−ik (1 + δ )λ.
By merging the two inequalities, we obtain д(Y ) =

д({a1, . . . ,ai ,b1, . . . ,bl−i }) ≤ д({a1, . . . ,ai })+д({b1, . . . ,bl−i }) ≤
c(1 + i

k )(1 + δ )λ +д(Bλ) + c
l−i
k (1 + δ )λ = д(Bλ) + 2c(1 + δ )λ.

We conclude that д(Bλ) ≥ [1 − 2c(1 + δ )]λ. □

Corollary 5.7. There exists a sliding window ( 1
3
− δ )-

approximation algorithm for submodular maximization that
uses space O(k log

1+δ
M
m ).

Proof. By Lemmas 5.5 and 5.6, there is a (λ,min(c, 1−c(1+
δ )),δ )-good, (min(c, 1 − 2c(1 + δ )),δ , c

1+δ )-mergeable family

of summaries. Plugging this into Theorem 5.4, we obtain a

min( c
1+δ , 1− 2c(1+δ ))-approximation in the sliding window

model. By choosing c = 1

3
, we conclude the proof. □

6 CONCLUSION
In this work, we have presented a new approach for solv-

ing maximization problems in sliding window streams, in

essence showing that augmenting standard insertion-only al-

gorithms with an additional property of suffix composability

is enough to obtain state-of-the-art approaches. We provide

examples of our approach for constrained subadditive and

submodular optimization problems as well as for diverse set

selection. In many of the instances, we provide state-of-the

art results that beat previously developed, hand-tuned al-

gorithms. An obvious open problem is how to apply this

approach to more problems (including minimization prob-

lems) and to tighten some of the approximation constants we

derived. A more ambitious program should take this work as

a building block towards developing a better understanding

of the structure of sliding window problems, with the goal of

designing new techniques to give provable upper and lower
bounds for this important class of problems.
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