ADS Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Clustering for Private Interest-based Advertising

Alessandro Epasto*

Andrés Munoz Medina*

Steven Avery

aepasto@google.com ammedina@google.com sgavery@google.com
Google, USA Google, USA Google, USA
Yijian Bai Robert Busa-Fekete CJ Carey
ybai@google.com busarobi@google.com cjcarey@google.com
Google, USA Google, USA Google, USA
Ya Gao David Guthrie Subham Ghosh
rosygao@google.com dguthrie@google.com subhamghosh@google.com
Google, USA Google, USA Google, USA
James Ioannidis Junyi Jiao Jakub Lacki
ioannidis@google.com junyijiao@google.com jlacki@google.com
Google, USA Google, USA Google, USA
Jason Lee Arne Mauser Brian Milch
jdlee@google.com amauser@google.com brian@google.com
Google, USA Google, USA Google, USA
Vahab Mirrokni Deepak Ravichandran Wei Shi
mirrokni@google.com deepakr@google.com shiw@google.com
Google, USA Google, USA Google, USA
Max Spero Yunting Sun Umar Syed
maxspero@google.com ytsun@google.com usyed@google.com
Google, USA Google, USA Google, USA
Sergei Vassilvitskii Shuo Wang
sergeiv@google.com mapleisle@google.com
Google, USA Google, USA

ABSTRACT

We study the problem of designing privacy-enhanced solutions
for interest-based advertisement (IBA). IBA is a key component of
the online ads ecosystem and provides a better ad experience to
users. Indeed, IBA enables advertisers to show users impressions
that are relevant to them. Nevertheless, the current way ad tech
companies achieve this is by building detailed interest profiles for
individual users. In this work we ask whether such fine grained
personalization is required, and present mechanisms that achieve
competitive performance while giving privacy guarantees to the
end users. More precisely we present the first detailed exploration

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD °21, August 14-18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467180

2802

of how to implement Chrome’s Federated Learning of Cohorts
(FLoC) APIL. We define the privacy properties required for the API
and evaluate multiple hashing and clustering algorithms discussing
the trade-offs between utility, privacy, and ease of implementation.

CCS CONCEPTS

+ Theory of computation — Unsupervised learning and clus-
tering; - Information systems — Online advertising; « Secu-
rity and privacy — Privacy protections.

KEYWORDS

Interest-based advertising; clustering; anonymity; privacy

ACM Reference Format:

Alessandro Epasto, Andrés Muiioz Medina, Steven Avery, Yijian Bai, Robert
Busa-Fekete, CJ Carey, Ya Gao, David Guthrie, Subham Ghosh, James Ioan-
nidis, Junyi Jiao, Jakub Lacki, Jason Lee, Arne Mauser, Brian Milch, Va-
hab Mirrokni, Deepak Ravichandran, Wei Shi, Max Spero, Yunting Sun,
Umar Syed, Sergei Vassilvitskii, and Shuo Wang. 2021. Clustering for Pri-
vate Interest-based Advertising. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD °21), August

https://doi.org/10.1145/3447548.3467180
https://creativecommons.org/licenses/by/4.0/

ADS Track Paper

14-18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3447548.3467180

1 INTRODUCTION

Interest based advertising (IBA) is a key part of the modern Internet
advertising ecosystem, as it allows advertisers to show users ads
based on their interests. IBA lies in contrast to contextual based
advertising, where the impression shown depends on the content of
the website the user is browsing. Thus IBA allows a car advertiser
to advertise to people who are in-market for a new car, no matter
which site they are browsing, whereas contextual advertising would
take cues from the site’s content to decide whether a car ad is
appropriate.

This ability to reach people based on their latent interests is a
powerful primitive that raises the efficiency of the market: users see
more relevant ads, advertisers see better performance, and publish-
ers garner higher revenues. However, to enable IBA today, ad tech
companies build detailed interest profiles for individual users. As of
2021 there are 4.66 billion internet active users [44] and by some es-
timates [38], the information collected by 52 advertising companies
can recover, on average, 91% of a user’s browsing history. In this
work we ask whether such fine grained personalization is required,
and present mechanisms that achieve competitive performance
while giving privacy guarantees to the end users.

Specifically, we focus on the role that third-party cookies play
in building user profiles, and, following recent announcements by
Safari, Firefox, and Chrome, explore whether IBA can be enabled
without their use. Our starting point is the Federated Learning of
Cohorts (FLoC) API proposed by Chrome as part of the Privacy
Sandbox initiative. Importantly, the FLoC API can act as a drop-in
privacy-safe replacement for third-party cookies. This is in stark
contrast to other solutions for private online advertising [23, 29]
that would require big changes from ad tech companies to conform
to a new advertising paradigm. We note that in practice such major
changes run the risk of ad-techs turning to fingerprinting and other
nefarious methods to preserve the status quo, rather than adopting
the new APIs.

At a high level, the approach taken by FLoC is to group users
into k-anonymous groups, and allow profile building per group,
rather than per individual. While the idea is relatively simple, it
is not a priori clear that such a grouping can be both efficiently
computed in a private manner, and be effective enough to replace
current per-user profiles. In this work we:

o Formally define the FLoC clustering problem, setting specific
privacy and utility goals.

o Introduce a number of different algorithms that present a
Pareto frontier between privacy, utility, and complexity of
implementation.

o Evaluate these methods on public and private datasets, demon-
strating the trade-offs involved, and proving the viability of
an IBA system based solely on cohorts.

Our paper is organized as follows: we first discuss the extensive
literature on private advertising. We then describe the current state
of IBA and the privacy risks involved with building personalized
interest profiles. After this, we introduce the FLoC API and discuss
its technical requirements and constraints. The rest of the paper

2803

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

is devoted to casting the problem of designing the FLoC API as a
clustering problem with cluster size constraints. In Section 4 we
discuss several candidates for the clustering algorithm each with
different utility and privacy trade-offs. Section 5 contains an ex-
tensive evaluation of the aforementioned algorithms on two public
datasets: the MovieLens dataset [26] and the "Million Song Dataset"
[11]. We conclude the paper with experiments on a proprietary ads
dataset where we demonstrate that using the FLoC API can provide
comparable utility to the current cookie-based system while giving
stronger privacy protections to end users.

2 RELATED WORK

Our work spans the areas of privacy preserving technology in
advertising as well as the algorithmic problem of clustering. These
two areas are vast so we will only briefly review the most relevant
material.

Privacy in advertisement. The privacy issues associated with on-
line advertising are very well known in the research community.
A thorough review of these problems can be found in [19]. Mul-
tiple solutions on how to solve this problem have been proposed
before. For instance, Guha et al. and Toubiana et al. [23, 29, 45]
propose systems based on cryptographic components to preserve
user privacy and interest-based advertising. These works propose
a completely new online advertising framework. Unlike the FLoC
AP], this framework requires all ad tech players to modify their
internal systems and implementations. Moreover, their work does
not discuss in detail the effects of their proposed systems on the
quality of ad targeting. By contrast, we propose a detailed analysis
of the effects of privacy on the ability to build interest profiles.

A strong way of preventing cross-site tracking is given by Kazienko
[32]. They propose targeting users based only on their behavior
across a session. These sessions are domain specific, effectively re-
ducing this proposal to contextual advertising. A different approach
to user privacy is the one proposed by AdNauseum [27]. Here the
authors generate artificial user profiles by blocking ads and arti-
ficially clicking on them. By doing this, AdNasueum introduces
enough noise in a user profile that it removes any incentive for ad
tech companies to track a user. This approach, however, does not
actually stop the tracking of users nor does it take into account
how publishers get affected by blocking ads or by generating fake
profiles.

Clustering. Clustering is the quintessential unsupervised ma-
chine learning problem and we refer to [46] for a review of this
area. The study of clustering dates back more than 5 decades [22, 28],
and countless applications have been fond for clustering methods
including data summarization and anonymization, exploratory data
analysis, matrix approximations and outlier detection as well as the
study of social and biological networks [15, 28, 34, 37, 40, 42, 47].
Given the vast array of applications for clustering, it is no surprise
that multiple independent formulations of it have been developed.
This includes k-clustering in metric spaces [2, 21, 36], hierarchical
clustering [9, 13, 16, 39], and graph clustering and community de-
tection [20], among others. We will briefly review these directions.

Perhaps the most well-known clustering formulation is that of k
clustering in metric spaces, where one seeks k points (known as

https://doi.org/10.1145/3447548.3467180

ADS Track Paper

centers) from the input so as to minimize an objective depending
on the distances of all points in input to their closest center. Several
variants of this problem have been studied including k-median,
k-means, and k-center. All such problems are NP-hard, but many
constant factor approximation algorithms are known [2, 21, 36].
This area has generated numerous research directions including the
study of core-sets [8, 25], distributed algorithms [6], and streaming
methods [3]. Many other directions in metric clustering (not center
based) have been explored including density based clustering [18].

Related to our work is also the area of size-constrained clustering
where one seeks clusters with size larger than a specified constant.
This is often the case in many applications in which clustering
is used for anonymization [1, 12] or when privacy considerations
require all the clusters to satisfy a minimum size guarantee as in our
work. Perhaps one the most relevant formulation of the problem
to our paper is that of r-gather [5] where the only requirement
is that clusters have size at least r but the number of clusters is
not constrained. For this problem, concurrent work [17] studied
efficient distributed algorithms that can scale to large data scenarios
typical in the application addressed in this work.

All previously mentioned formulations concern flat clustering (a
single partitioning of the data) but an important challenge in the
area is that of hierarchical clustering which seeks a hierarchical
family of clusters representing the data at different granularities [22,
39]. Such formulation has many advantages over flat clustering
including avoiding the need to specify a precise number of clusters
(which is often unknown). Significant work in this area has studied
procedures for hierarchical clustering including the well-known
single linkage, complete linkage and average linkage [16, 22] as
well as efficient distributed hierarchical algorithms [9].

Another relevant area is that of graph clustering and commu-
nity detection [20, 35]. Work in these areas has focused on finding
tightly-knit clusters of nodes in a graph which can represent, for
instance, fundamental organizational units in social networks as
well as in biological networks. Graph clustering and community
detection have been defined in terms of spectral methods optimiz-
ing conductance [4], density based methods [33] and correlation
clustering [7] among others.

3 INTEREST BASED ADVERTISING

We will now describe Interest Based Advertising (IBA) and how
third-party cookies are used to enable this technology. We begin
by defining the main concepts.

e A user is any person browsing online.

o A publisher is the landing website which a user has the intent
to visit. This is usually referred to as a first-party domain.
An example of a publisher is nytimes.com. An advertiser
website, for instance nike. com, can also act as a publisher
when a user visits that website directly.

An advertiser is an entity who wants to show an ad to a user.
Ads are shown on publisher’s sites.

Ad tech companies are intermediaries working on behalf of
publishers—sell side platforms (SSPs), advertisers—demand
side platforms (DSPs), or both. Ad tech companies are respon-
sible for the technical and algorithmic aspects of fulfilling

2804

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

ad requests. Ad tech companies are usually referred to as
third-parties.

A cookie is a byte string associated with a (user, domain) pair
which is stored in a user’s browser. A cookie corresponds
to the identity of a user in a domain. A cookie is called
first-party when it corresponds to the domain the user is
currently visiting and third-party otherwise. Cookies are
crucial to enable most features in modern web browsers as
they allow publishers to preserve state. For instance, keeping
a shopping cart up to date or keeping a user logged in.

The role of third-party cookies. We now describe how third-party
cookies are currently used to enable interest based advertising.
When a user visits a website (for instance domain.com), the website
sends an HTTP request to an ad tech company with the (third-
party) cookie the ad tech company has for this user. After visits to
multiple websites, the ad-tech company can build a profile of the
websites visited by the user (See Figure 1(a)). The ad tech company
uses this profile to infer user interests, and at a future time, when
the ad tech company receives an ad request, the ad tech company
can look up the user profile and match it with their own targeting
campaigns (see Figure 1(b)).

The above discussion also describes the main user privacy con-
cern. Should ad tech companies be allowed to store a detailed brows-
ing history of users? The main information needed by an ad tech
company to serve personalized ads are user profiles, and the iden-
tity and browsing history of a user are currently used only as means
to an end. Therefore, it should be possible for personalized ads to
be served without having to keep a detailed record of every user’s
browsing history.

3.1 The FLoC API

Recently Chrome has proposed [30] the Federated Learning of
Cohorts (FLoC) API as a way to enable IBA in a world without
third-party cookies. The goal of this API is to replace these unique
user identifiers by a shared, k-anonymous [41] cohort id. Just like
third-party cookies, a cohort id might have no meaning on its own.
However, this cohort id can be used by ad tech companies to build
cohort profiles. These profiles can then be used as before to match
ad campaigns. Since a cohort id is shared by multiple users, when
used on their own, a cohort id does not allow for re-identification
of users across websites. On the other hand, the profiles built by
the ad tech company are now interests shared by a large number
of users, which in principle could hinder the ability to accurately
target users. Ideally, cohorts would consist of a large number of
users who share exactly the same interests. This naturally raises
the question of how should cohort ids be assigned to users? While
this can be naturally interpreted as a clustering problem - similar
users get clustered together, we need to keep in mind the following
constraints.

e K-anonymity [41]. Each cohort id must be shared by at
least k users. By enforcing k-anonymity we ensure that a
user is lost in the crowd.

e Local computation. The cohort id needs to be computed in
the browser, preferably in a way that can be easily audited.

e Central server trust State-of-the-art clustering algorithms
generally require access to raw data, which in this case would

ADS Track Paper

Ad tech

domain.com

Domain 1
domain.com

u123

-©

Domain 2
travel.com

U345| xyz.com

UMM | abc.com

(@)

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Show ad for

Ad tech
User| Interest | Interest
U123| Traveling | Sports
U345| Hiking Dogs
UN1| Clothes Bikes
Returnad for
campaign C222 |, Target Target
cin Biking | Running
C222 Hiking | Outdoors

(b)

Figure 1: (a) Depiction of how third-party cookies are used by ad-tech companies to build user profiles. (b) Use of third-party

cookies to serve personalized ads.

require access to all users’ browsing history. An ideal cluster-
ing algorithm would forego this requirement, eschewing the
need for any central server to collect or keep detailed brows-
ing history of users. It is worth pointing out, however, that a
single trusted server having access to this data is still better
than the current state of IBA, where multiple unregulated
companies have access to this fine-grained user information.
In our algorithm comparison we include both centralized
and distributed algorithms.

4 ALGORITHMS

We now describe the algorithms that satisfy the desiderata from
the previous section, we present them here in order of simplicity as
we believe ease of implementation, interpretability and debugging
should be considered in the design of a clustering algorithm for
the FLoC API Throughout the remainder of the paper we will
encode users as a d dimensional vectors x1,...,x, € R? and we
will denote by U this set of n users. A clustering algorithm is a
function F: R? — N that maps a user to a cohort id. Given a cohort
id j € N we denote by C; = {x € U: F(x) = j}. We will drop the
dependence on the cohort id j when it is understood from context.
Finally, given a cohort C we let
1
i 2"

xeC

p(C) =
denote the centroid of a cohort.

4.1 SimHash

SimHash is an instantiation of the popular locality sensitive hashing
(LSH) family of algorithms [48]. Initially developed with the goal
of identifying near duplicate documents quickly, SimHash takes as
input a d-dimensional vector x and outputs a p-bit vector Hy(x) €
{0, 1} which we refer to as the hash of x.

The i-th coordinate of the hash vector is obtained by the follow-
ing rule:

0 w'x<0
H,(x)[i] = Lo -
P()[] {1 w;'—x>0,
where wq,..., wp are random unit-norm vectors. A cohort cor-

responds to all users whose input vectors share the same hash.
Figure 2 shows an example of the SimHash function Hs.

2805

SimHash has the property that similar vectors are more likely to
be hashed to the same cohort id than dissimilar vectors. More pre-
cisely, if x1 and x3 are two vectors, then the probability of mapping
x1 and x3 to the same p-bit cohort id is given by:

p
P(Hp(x1) = Hp(x2)) = (1 - @) ,

where 6(x1, x2), corresponds to the angle between vectors x;
and xy. That is, input vectors with small angles between them are
exponentially more likely to share the same hash than input vectors
with a large angle between them. Alternatively, vectors with high

%, are more likely to be in the same cohort.

The main advantage of using SimHash is that the computation
of the cohort id for one user does not depend on the information of
others. Given a vector x, its cohort id can be calculated in the client
without knowledge of any other user’s information. The properties
of SimHash ensure that the cohort id calculated in this manner
is shared with users that have similar input vectors. In particular,
there is no need for any centralized data collection to compute
cohort ids. Despite this, the properties of the SimHash algorithm
will ensure that cohorts generated in this way will consist of similar
users. This is a remarkable feature of the SimHash algorithm as
it allows for clustering to happen without a central server ever
storing a user’s browsing history.

The main downside of SimHash is that a minimum cluster size
cannot be enforced. Nonetheless, this problem can be solved by
having an anonymity server that tracks the size of each cohort.
This server could block the API from returning a cohort id if the
cohort is not large enough. Since the server only gets to access a
small bit length hash of a user’s browsing history, the amount of
information revealed to the server is minimal.

cosine similarity,

4.2 SortingLSH

The choice of the number of bits p defining the SimHash algorithm
is crucial. If it is too low, cohorts will be large, making it more likely
for dissimilar users to be part of the same cohort. On the other hand
a large value of p can result in cohort ids that are shared by only
a small number of users, violating the k-anonymity requirement.
The difficulty in the choice of p is exacerbated by the fact that the
cohorts generated by SimHash can have very heterogeneous sizes:

ADS Track Paper

ws
Original 2 (0.3, 0.8)

Random projections: [W1 - T,W2 *
Ha(v): [1,-1,1]

T, ws - 1]

Figure 2: Depiction of the SimHash algorithm

a few very large cohorts and a large number of small cohorts. In
this scenario, splitting the big cohorts by increasing the number of
bits for SimHash is impossible as it would break the k-anonymity
of smaller cohorts (see Figures 3(a) and 3(b)).

SortingLSH is a method that solves this issue and ensures k-
anonymity while improving the quality of SimHash at the same time.
This is achieved by homogenizing the size of cohorts. SortingLSH
is a minimally centralized method that acts by post-processing
SimHash clusters to ensure k-anonymity.

Let h; = Hp(x;) denote the p-bit hash generated by SimHash
for user i. Let H = {hj,...h,} be the multiset (with repetitions)
of hashes of all users. Instead of assigning cohorts by grouping
together users by their SimHash, SortingLSH generates cohorts as
follows:

(1) Sort Ay, ..., hy in lexicographical order to obtain a sorted list
of hashes h(y),... h(p).

(2) Assign the sorted hashes to cohorts by partitioning the order
in contiguous intervals containing at least k users each.

More formally, let ap = h(o), ai, ..., a; be distinct values from H
sorted in lexicographical order. For all j < t SortingLSH assigns
all users whose SimHash is a string in the lexicographical order
between a; (included) and a1 (excluded) to the j-th cluster id. For
Jj = t all users whose SimHash is after a; are in the ¢-th cluster. The
strings ay, . . . a; can be chosen arbitrarily from H subject to having
at least k user in each interval. (See Figure 4 for a representation of
the process.)

The ordering step ensures that contiguous hashes in this order
correspond to users with mostly similar SimHash values. The size
constraint of the interval ensures that the cohorts always have at
least k users.

PrefixLSH. There are many options for choosing the intervals in
SortingLSH as one could select the intervals by any optimization
method. In our experiments, however, we use a simple approach
that can be implemented at scale and which we call PrefixLSH. This
process is similar to k-d-tree construction and the related LSH
techniques of ForestLSH [10]. PrefixLSH obtains the intervals using
a recursive approach. The recursion proceeds in levels starting
from level 1 where we have a single interval (containing all users).
At level i, we tentatively partition the current interval in two, by
dividing it into two strings with i-th bit 0 (left interval) and bit
1 (right interval). If both intervals have at least k users each, we
continue the recursion in both (at level i + 1). Otherwise the current

2806

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

interval is final. A depiction of this process is shown in Figure 3(c).
It is possible to see that this variant of SortingLSH (which is the one
we use in our experiments) defines intervals in the lexicographical
order that have the same bit string prefixes. The implementation
of any SortingLSH method does require a central server to sort
all user hashes and calculate k-anonymous cohorts. However, this
information is also needed by a server that enforces k-anonymity on
cohorts generated using SimHash or any other method. Therefore,
the level of centralization is no worse than that of SimHash using
an anonymity server.

4.3 Graph-based clustering methods

Our main focus is on designing solutions involving minimal cen-
tralization but for completeness we now turn our attention to cen-
tralized methods. In this section, we study graph-based clustering
algorithms that leverage the structure of a similarity graph (i.e., a
graph where similar nodes are connected) to find the clusters. More
precisely, in our setting, a similarity graph is a graph where users
are nodes and edges connect two users if their vectors are similar.
We will focus on some example baseline solutions exploiting such
techniques, evaluating efficient algorithms that are implementable
in large-scale distributed computational frameworks. We stress that
more algorithms could be explored, and some other options are
reviewed in the related work section.

To use graph-based methods in our setting we use a three step
approach. First, we build a similarity graph (this process is de-
scribed in the next section). Second, we apply a graph clustering
algorithm (we do this using two clustering methods: affinity [9],
and METIS [31]). Finally, we post-process the clusters. We now
review the three steps.

4.3.1 Step one: graph construction. The first step to use a graph-
based clustering in our setting is to construct a similarity graph
over the users. In our experiments, we create a user-to-user cosine-
similarity weighted graph (i.e, the edge weights encode the cosine
similarity of the vectors associated to the users). This is achieved by
using efficient locality sensitive hashing techniques to identify pairs
of users with high cosine similarity of their vector, and creating an
edge only for the highest similarity pairs (the LSH method is used
similarly to [24]).

4.3.2 Step two: graph clustering. Once we have a similarity graph,
we can run the graph clustering algorithm. Here we evaluate two
algorithms.

Affinity hierarchical clustering. We used a highly scalable graph
clustering algorithm known as affinity hierarchical clustering [9].
This algorithm, in summary, performs hierarchical clustering in
a bottom-up fashion, creating larger clusters by merging smaller
clusters connected by highly similar edges. This is done in a way
that ensures a minimum cluster size for all clusters.

More precisely, the algorithm proceeds by clustering users using
hierarchical agglomerative clustering as described in [9]. However,
in our algorithms we need to enforce a bound on the size of clusters,
and we do so by setting a lower and upper bound on the size of
clusters, abiding by these bounds while forming the clusters, and
removing clusters that are too small.

ADS Track Paper

)
/

—~
K ,/‘
N

(a) SimHash p=1

O

(1,1)

O

(b) SimHash p =2

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

_— ~
QO ~
- \") Vs ~
Q I
(0001 —
L S J L /7\&7/‘\
~ (-
~ . \,.) u\7>
/_77 \é.-\ /
Oon|
O
OO

(c) PrefixLSH

Figure 3: Example of k-anonymity enforcement for k=4. In Figure 3(a), using 1 bit of SimHash generates k-anonymous cohorts,
but cohort (1) is very large. In Figure 3(b), the large cluster (1) is split into cohort (1,0) and cohort (1,1) by using a 2-bit SimHash.
This, however, results in cohorts (0,0) and (0,1) violating the k-anonymity restriction. Finally, In Figure 3(c) only the large

cluster is split while the (0,0), (0,1) is assigned to the same cohort.

Cohort Cohort Cohort
1 2 3

h(l) h(z) o o o

Figure 4: Example of SortingLSH enforcing k-anonymity
with k=3. The first cohort consists of the first three sorted
hashes, the second the 4th to the 7th and the third cohort is
made up of the 8th to the 10th hash. All cohorts have at least
3 users.

METIS. As an additional baseline we use the well-known METIS
graph partitioning algorithm [31]. This is a popular baseline amongst
the single-machine graph partitioning algorithms with size con-
straints. This algorithm uses a multi-level coarsening of the graph
to compute clusters. The method allows as well to set size con-
straints. We used this algorithm as a baseline for comparison, but
due to its limited scalability compared to affinity, we are able to use
it only on the smaller publicly-available datasets.

4.3.3 Step three: post-processing. Finally, once we obtain the graph-
based clusters (with either methods), we perform a post-processing
step which we will show can improve the performance significantly.

Initial cluster-centroid computation. Having generated a cluster-
ing, for each such cluster we obtain a centroid by averaging the
user’s profile vector in the cluster which is associated to the cluster.

Llyod’s clustering improvement rounds. Once we compute the
cluster centroids we optionally apply some rounds of the Lloyd’s
iterative method. This is an iterative algorithm which repeatedly
assigns points to their nearest centroid, and then computes the
mean of each cluster as the centroid. To implement this efficiently
we use a SimHash-based locally sensitive hashing scheme to solve
the nearest neighbor search problem for finding the nearest center.

Traditionally the Lloyd’s method is used to optimize k-means
cost by initializing it by random points as centroids. However, we
note that the initialization with affinity clustering or METIS is

2807

essential for our applications for two reasons: 1) without this ini-
tialization, the algorithm will greatly violates the size constraints
during the Lloyd local optimization, and 2) the number of rounds
to converge to a high-quality solution increases significantly. Nev-
ertheless, we observe that a few iterations of Lloyd algorithm, ini-
tialized with affinity or METIS centroids, can increase the quality
of the solutions without violating the imposed size constraints of
the vast majority of clusters as observed in the empirical study.

Final user-to-cluster assignment. The final step of the post-processing

method is to associate each user with a cluster. This is done by
simply assigning each user to the cohort corresponding to the near-
est centroid. Notice that, in principle, the final cluster assignment
might be quite differ from the clusters obtained by the graph-based
clustering.

Unlike SimHash or SortingLSH, affinity clustering and METIS
use the information of users to actively search for similar users.
Therefore, we should expect to get a much better privacy-utility
trade-off from these algorithms. Nevertheless, the generation of the
user-to-user graph requires access to the full browsing history of
a user by a centralized server. This is a trade-off that needs to be
weighed by any browser wishing to implement this algorithm.

5 EVALUATION ON PUBLIC DATASETS
To evaluate the quality of the clustering algorithms we measure
the ability to group similar users together. We recall that the cosine
similarity between two vectors x1 and x3 is given by

xier
lle [l 112
Given a cohort C we define the cohort similarity as

! Z CosSim(x, u(C)).

|C| xeC

CosSim(x1, x2) = e [-1,1].

Sim(C) =

That is, the cosine similarity of a cohort is the average cosine simi-
larity between all elements in the cohort and the cohort’s centroid.
Finally, the quality metric for an algorithm is the average cohort
similarity of all cohorts generated by the algorithm. Notice that an
algorithm that assigns each user to its own cohort will have the

ADS Track Paper

perfect quality metric of 1. To ensure we do not favor algorithms
that generate small cohorts, we also define a privacy metric.

Let n denote the number of users in a dataset and U (k) denote the
number of users in cohorts of size at least k. To assess the privacy
properties of each algorithm we look at the following anonymity
metric

k

max
k:U(k)>an

That is, the largest k such that « fraction of users belong to a cohort
that is k-anonymous. For the results reported in this section we set
a=.98.

anon-quantile(a) =

5.1 Movielens 25M

The MovieLens 25M [26] dataset consists of 25 million movie
ratings keyed by user id and scored from 0 stars to 5 stars. Each
movie is associated with one or more categories chosen from a
dictionary of 20 movie genres. These genres include categories like
comedy and thriller as well as a “no genres listed” category

User embedding generation. We proceed to describe the process
by which we obtain user embeddings in R for the users in the data.
The process consists of two steps:

(1) Feature extraction: Given the set of genres G, We encode
each (movie, user) pair as a feature vector v € RIG! where
v; > 0 if and only if the movie is associated with genre i.
When v; > 0 its value is given by the ranking of the movie
provided by the user.

(2) Feature vector aggregation: To aggregate all feature vectors
associated with a user we simply take the average of the
vectors.

(3) Centering. Finally, we center all feature vectors to ensure
the dataset has mean zero.

The choice of centering the data was made to ensure that a baseline
that randomly groups users together on cohorts of the same size
has an average cohort similarity of zero.

5.2 Million song dataset

The million song dataset (MSD) is a collection of 1 million songs
tagged by categories and user ids. The dataset consists of the listen-
ing history of 650 thousand users. Each (user, song) pair is tagged
by the number of times it was listened to as well as the categories
the song belongs to. These categories have weights representing
how well the category describes each song. Examples of these tags
are “Pop” or “60’s”. The dataset also includes some subjective tags
such as “good” or “awesome”. The original dataset consists of more
than 200 thousand categories. However, most of these categories
appear only a few times in the whole dataset. For this reason we
restricted the set of categories to those who appear in at least 1%
of the songs. The user embedding process is very similar to the
embedding process described for the MovieLens dataset. The only
difference is that the entry v; of the song feature vector corresponds
to the product of the number of times the user listened to that song
and the significance of the category to the song.

The results of running the proposed clustering algorithms on
both datasets can be found in Figure 6. The first thing to notice is
that, not surprisingly, the use of a centralized algorithm improves
the quality of the cohorts, specially at high levels of anonymity. In

2808

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Affinity Movielens Metis
0.9
sos \
s
£
@07 T
=
@
8
06
o
= =+ Original
Lioyd rounds: 1
0.5 - Lloyd rounds: 2
+ Lloyd rounds: 3
0 1000 2000 3000 4000 5000 6000 O 1000 2000 3000 4000 5000 6000
Anon-quantile(.98) Anon-quantile(.98)
Affinity MSD Metis
0.9
>
£0.8
3
£
@
0 0.7
<
@
8
c 0.6
s
2
=+ Original
05 Lloyd rounds: 1
= Lloyd rounds: 2
+ Lloyd rounds: 3
0.4

0 1000 2000 3000 4000 5000 6000 O
Anon-quantile(.98)

1000 2000 3000 4000 5000 6000
Anon-quantile(.98)

Figure 5: Results on the Movielens and MSD dataset with
varying numbers of Lloyd rounds applied to Affinity and
Metis clustering.

fact, even when SimHash generates very small cohorts, it seems
to not be able to match the performance of affinity clustering at
an anonymity level of 1000. This shows that there is certainly
much to be gained by using a centralized graph-based algorithm.
Nevertheless, it is interesting to see that the biggest gain in quality
comes from comparing the fully decentralized SimHash algorithm
to a random baseline which would have a cosine similarity of zero.
This result is rather surprising and demonstrates that clustering
without access to raw user information is still a viable solution to
generating cohorts.

To further understand the effect of using multiple rounds of
training in our centralized algorithms we show in Figure 5 the
quality-privacy tradeoffs of these algorithms after different number
of rounds of Lloyd’s algorithm there we notice that even though
the size of clusters diminishes (the plot shifts a slightly to the left),
this minor size constraint violation is overshadowed by the much
bigger gain in utility. Although, this gain seems to plateau after 2
iterations of the Lloyd’s algorithm.

6 EVALUATION ON ADS DATASET

We now show results of using cohorts for the task of interest based
advertising on a proprietary ads dataset. The dataset corresponds
to 7 days of ad impression history recorded by an ad tech company.
Each record in the dataset contains up to 5 interest categories asso-
ciated with the publisher’s website. Each category is weighed by
the relevance of the category to the website. Overall we consider
approximately 2000 categories ranging from ’/Arts/Literature’ to
’/Cars/SportCars/Convertibles’. To generate user vectors we simply
take the average of all the weighted categories a user visited over

ADS Track Paper

Movielens

—— Affinity + centroid
=~ Metis + centroid

—< Prefix LSH

—e— SimHash

o 14

e

Mean cosine similarity

0 1000 2000 4000 5000 6000

3000
Anon-quantile(.98)

MSD

—+— Affinity + centroid
=~ Metis + centroid

o4
©

s Prefix LSH
—e— SimHash

4
®

e
o

Mean cosine similarity

0 1000 2000 4000 5000 6000

3000
Anon-quantile(.98)

Figure 6: Results on the Million Song and Movielens
datasets.

a period of 7 days. To evaluate the quality of the cohorts gener-
ated by this algorithm we generate cohort profiles by averaging
all categories visited by users in a particular cohort. Finally, we
evaluate the quality of these profiles by measuring their ability to
predict future conversions. More precisely, let 7 denotes the set
of interest categories. For a cohort C we denote by P¢ € R the
cohort profile. For each user U we denote by Py € {0, 1} 171 4 user
conversion profile where Py [c] = 1if user U had a conversion on a
website tagged with category c. The user conversion profile is built
using 7 days of data as well. The timeline for generating cohorts,
cohort profiles and user conversion profiles is depicted in Figure 7.
The metrics for evaluating our algorithms will be precision and
recall at 10. That is, for a cohort profile P¢, let Top(Pc¢) be the top
10 categories (by weight) on profile Pc, for every category c we
define an algorithm’s precision and recall at 10 as:

_ ZcXuec L{Pylc] =1 Ac € Top(Pc)}
2c|Cl1{c € Top(Pc) = 1}
_ ZcXuec L{Pylc] =1 Ac € Top(Pc)}
Yu{Pyle] =1} '
Let 7’ = {c € I|c € Top(P¢) for some C} denote the set of cate-

gories that are in the top 10 categories for at least one cohort profile.
We define the overall precision and recall of an algorithm as

Prec[c]

Rec|c]

1 1
Prec = — Prec[c] Prec = — Recl[c].
1] c;' |71 ;,

In Figure 8 we show the predictive power of the algorithms pro-
posed here while enforcing 1000-anonymity. Anonymity is enforced
by replacing all profiles in cohorts with fewer than 1000 users with
the most popular 10 browsing categories. We compare our algo-
rithms against two simple baselines. One that randomly clusters
users in groups of 1000. The second corresponds to a case where

2809

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Build cohort profile

7 day
BrowsinT history

1day 7 day

Conversion data

Cohort training data User conversion profile

Figure 7: Timeline used to build cohorts, cohort profiles and
user conversion profiles. Cohorts are built using 7 days of
data. After cohorts are built, the next day of data is used to
generate the cohort profiles. Finally the next 7 days are used
to generate the conversion profiles.

each user forms a singleton cluster. That is, the precision and ac-
curacy at predicting conversions is based on the current user pro-
files. Notice that in practice this signal is usually combined with
other information such as features of the current website a user
is visiting. Thus, the baseline does not exactly match the propri-
etary approaches of various interest-based advertising platforms;
nonetheless we believe it still provides a very strong point of com-
parison. The values reported are relative to the latter baseline.

0.6 15
s =
0 ©
2 0.4 N 3 1.0
o e
[} \ (]>J
2 E
2 0.2 < 0.5
K \ @
o

0.0 - 0.0 -

o o 0 o o o 0 o
\xo‘\d ?(é‘*» & Xce““ g@‘\d ?(e&*» ‘5\‘0‘\ ce““
e e
(@) (b)

Figure 8: (a) Relative precision on the ads dataset. (b) Rela-
tive recall.

The first takeaway from these experiments is that by grouping
users with similar interests together we can achieve a better recall
than the singleton cluster baseline. This suggests that the FLoC
API could be used as a way to expand the reach of campaigns who
are trying to target a specific audience. This gain on recall comes
with a corresponding decrease in precision. Still, even the fully
decentralized SimHash algorithm achieves 55% of the current cookie
based profiles or a 4x improvement over a random baseline. These
results indicate that interests are preserved through clustering.

7 LIMITATIONS OF THE STUDY

In this paper, we show that there are clustering-based solutions that
can achieve certain privacy and utility benchmarks set forth in the
paper (namely providing k-anonymity guarantees, while ensuring
meaningful signal for interest-based advertising). We stress, how-
ever, that our study is only preliminary and that a complete solution
for implementing a real-world system within a browser platform

ADS Track Paper

that can operate alongside other mechanisms, will need to take into
account numerous other considerations that go beyond the scope
of this paper. Among the open questions left by this paper, we leave
as future work the study of whether differential privacy guarantees
can be combined with those of k-anonymity for further enhanc-
ing privacy protections. We also leave as future work examining
other locally sensitive hashing [14, 43] and clustering [16, 17, 22]
algorithms for this application.

8 CONCLUSION

In this paper, we proposed a series of cohort id assignment al-
gorithms that use multiple clustering techniques (distributed and
centralized) and extensively evaluated them on different datasets
(freely available and proprietary). For the task of predicting con-
versions, we demonstrated our clustering methods produce an in-
formative signal, and we can achieve significant improvements in
recall and precision over randomly assigning users to cohorts even
at high anonymity levels. Moreover, the recall of our algorithms
can in some cases surpass the recall of naively using user profiles
for predicting interests. This suggests that the FLoC API could be
used to expand the reach of advertisers to similar audiences.

REFERENCES

[1] Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina
Panigrahy, Dilys Thomas, and An Zhu. 2005. Approximation algorithms for
k-anonymity. Journal of Privacy Technology (JOPT) (2005).

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. 2017. Bet-
ter Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algorithms.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017.
Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. 2009. Streaming k-means
approximation.. In NIPS, Vol. 4. 2.

Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning
using pagerank vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 475-486.

Amitai Armon. 2011. On min-max r-gatherings. Theoretical Computer Science
412, 7 (2011), 573-582.

Olivier Bachem, Mario Lucic, and Andreas Krause. 2017. Distributed and provably
good seedings for k-means in constant rounds. In International Conference on
Machine Learning. PMLR, 292-300.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering.
Machine learning 56, 1 (2004), 89-113.

MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab S. Mir-
rokni. 2014. Distributed Balanced Clustering via Mapping Coresets. In NeurIPS.
2591-2599.

Mohammad Hossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Moham-
mad Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni.
2017. Affinity clustering: Hierarchical clustering at scale. In NeurIPS. 6867-6877.
Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-
tuning indexes for similarity search. In WWW. 651-660.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. The Million Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

[12] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. 2007. Efficient k-
anonymization using clustering techniques. In International Conference on Data-
base Systems for Advanced Applications. Springer, 188-200.

Sanjoy Dasgupta. 2016. A cost function for similarity-based hierarchical clus-
tering. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing. 118-127.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In SOCG, Jack Snoeyink
and Jean-Daniel Boissonnat (Eds.). ACM, 253-262.

Patrik D’haeseleer. 2005. How does gene expression clustering work? Nature
biotechnology 23, 12 (2005), 1499-1501.

Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica Shi.
2021. Hierarchical Agglomerative Graph Clustering in Nearly Linear Time. In
ICML.

Alessandro Epasto, Mohammad Mahdian, Vahab Mirrokni, and Peilin Zhong.
2021. Massively Parallel and Dynamic Algorithms for Minimum Size Clustering.
arXiv preprint (2021).

[10]

[11]

[13]

[14]

[15

[16]

[17

2810

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

[18] Martin Ester, Hans-Peter Kriegel, Jérg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
KDD, Vol. 96. 226-231.

José Estrada-Jiménez, Javier Parra-Arnau, Ana Rodriguez-Hoyos, and Jordi Forné.
2017. Online advertising: Analysis of privacy threats and protection approaches.
Computer Communications 100 (2017), 32-51.

Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75-174.

Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. TCS 38 (1985), 293-306.

John C Gower and Gavin JS Ross. 1969. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54—64.

Saikat Guha, Bin Cheng, and Paul Francis. 2011. Privad: Practical Privacy in
Online Advertising. In Proceedings of the 8th USENILX, David G. Andersen and
Sylvia Ratnasamy (Eds.). USENIX Association.

Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. 2020. Grale:
Designing networks for graph learning. In KDD. 2523-2532.

Sariel Har-Peled and Soham Mazumdar. 2004. On coresets for k-means and
k-median clustering. In STOC. 291-300.

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article Article 19 (Dec. 2015),
19 pages. https://doi.org/10.1145/2827872

Daniel C. Howe and Helen Nissenbaum. 2017. Engineering Privacy and Protest:
A Case Study of AdNauseam. In Proceedings of IWPE@SP, José M. del Alamo,
Seda F. Giirses, and Anupam Datta (Eds.), Vol. 1873. CEUR-WS.org, 57-64.

Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31, 8 (2010), 651-666.

Ari Juels. 2001. Targeted advertising... and privacy too. In Cryptographers’ Track
at the RSA Conference. Springer, 408-424.

Josh Karlin. [n.d.]. Federated Learning of Cohorts (FLoC). https://github.com/
WICG/floc

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998), 359-392.
Przemystaw Kazienko and Michal Adamski. 2007. AJROSA—Adaptive personal-
ization of web advertising. Information Sciences 177, 11 (2007), 2269-2295.
Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In International
Colloquium on Automata, Languages, and Programming. Springer, 597-608.
Matthéus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. 2019. Fair
k-Center Clustering for Data Summarization. In ICML.

Jure Leskovec, Kevin J Lang, and Michael Mahoney. 2010. Empirical compari-
son of algorithms for network community detection. In Proceedings of the 19th
international conference on World wide web. 631-640.

Shi Li and Ola Svensson. 2016. Approximating k-Median via Pseudo-
Approximation. SIAM . Comput. (2016).

Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and
Benjamin Moseley. 2015. Fast distributed k-center clustering with outliers on
massive data. In Advances in Neural Information Processing Systems. 1063-1071.
Bashir Muhammad A and Christo Wilson. 2018. Diffusion of User Tracking Data
in the Online Advertising Ecosystem. Proc. Priv. Enhancing Technol. (2018).
Fionn Murtagh and Pedro Contreras. 2012. Algorithms for hierarchical cluster-
ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2,1 (2012), 86-97.

Liudmila Prokhorenkova, Alexey Tikhonov, and Nelly Litvak. 2019. Learning
clusters through information diffusion. In WWW. 3151-3157.

Pierangela Samarati and Latanya Sweeney. 1998. Generalizing Data to Provide
Anonymity when Disclosing Information (Abstract). In Proceedings of the Seven-
teenth ACM SIGACT-SIGMOD-SIGART, Alberto O. Mendelzon and Jan Paredaens
(Eds.). ACM Press, 188.

Jana Schmidt, Andreas Hapfelmeier, Marianne Mueller, Robert Perneczky, Alexan-
der Kurz, Alexander Drzezga, and Stefan Kramer. 2010. Interpreting PET scans
by structured patient data: a data mining case study in dementia research. KAIS
24,1 (2010), 149-170.

Anshumali Shrivastava and Ping Li. 2014. In Defense of Minhash over Simhash.
In AISTATS, Vol. 33. JMLR.org, 886-894.

Statista. [n.d.]. Internet Usage Worldwide. https://www.statista.com/statistics/
617136/digital-population-worldwide/

Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon
Barocas. 2010. Adnostic: Privacy preserving targeted advertising. In Proceedings
Network and Distributed System Symposium. The Internet Society.

Dongkuan Xu and Yingjie Tian. 2015. A comprehensive survey of clustering
algorithms. Annals of Data Science 2, 2 (2015), 165-193.

Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In WSDM. 587-596.

Kang Zhao, Hongtao Lu, and Jincheng Mei. 2014. Locality Preserving Hashing.
In AAAL

[19

[20]

[21

[22]

[23

[24

[25

[26

[27

(28]

[29

[30

™
=

[32

[33

[34

[35

(36]

[37

'
&,

(39]

[40

[41

[42

=
&

[44

[45

[46]

[47

(48]

https://doi.org/10.1145/2827872
https://github.com/WICG/floc
https://github.com/WICG/floc
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/

	Abstract
	1 Introduction
	2 Related work
	3 Interest based advertising
	3.1 The FLoC API

	4 Algorithms
	4.1 SimHash
	4.2 SortingLSH
	4.3 Graph-based clustering methods

	5 Evaluation on public datasets
	5.1 Movielens 25M
	5.2 Million song dataset

	6 Evaluation on ads dataset
	7 Limitations of the study
	8 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 45.30, 63.37 Width 251.55 Height 97.34 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 45.2983 63.3725 251.55 97.3431

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 9
 0
 1

 1

 HistoryList_V1
 qi2base

