
Clustering without Over-Representation
Sara Ahmadian

Google Research

New York, NY, US

sahmadian@google.com

Alessandro Epasto

Google Research

New York, NY, US

aepasto@google.com

Ravi Kumar

Google Research

Mountain View, CA, US

ravi.k53@gmail.com

Mohammad Mahdian

Google Research

New York, NY, US

mahdian@google.com

ABSTRACT
In this paper we consider clustering problems in which each point

is endowed with a color. The goal is to cluster the points to mini-

mize the classical clustering cost but with the additional constraint

that no color is over-represented in any cluster. This problem is

motivated by practical clustering settings, e.g., in clustering news

articles where the color of an article is its source, it is preferable

that no single news source dominates any cluster.

For the most general version of this problem, we obtain an algo-

rithm that has provable guarantees of performance; our algorithm

is based on finding a fractional solution using a linear program

and rounding the solution subsequently. For the special case of the

problem where no color has an absolute majority in any cluster, we

obtain a simpler combinatorial algorithm also with provable guaran-

tees. Experiments on real-world data shows that our algorithms are

effective in finding good clustering without over-representation.

CCS CONCEPTS
• Information systems → Clustering; Data mining; • Theory
of computation→ Facility location and clustering;Unsuper-
vised learning and clustering.

ACM Reference Format:
Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian.

2019. Clustering without Over-Representation. In The 25th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’19), August
4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3292500.3330987

1 INTRODUCTION
Clustering is a fundamental problem in data mining and unsuper-

vised machine learning. Many variants of this problem have been

studied in the literature. In a number of applications, clustering

needs to be performed in the presence of additional constraints,

such as those associated with fairness or diversity. Chierichetti et

al. [9] study one such clustering problem, where the constraint is

that the distribution of a particular feature (say, gender) in each

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6201-6/19/08.

https://doi.org/10.1145/3292500.3330987

cluster is identical to that of the general population. This is a highly

constraining requirement, particularly in cases where the protected

feature can take many values, and in many cases such a clustering

does not exist. Furthermore, in many applications, such as the ones

explained below, proportional representation is not really required:

a clustering that ensures no particular feature value is highly over-

represented in any cluster suffices.

Amotivating application for our work is the following: every day,

online advertising systems sell billions of advertising opportunities,

specified by keywords the advertisers provide, through auctions.

This is a highly heterogeneous set of auctions, and to optimize

any of the auction parameters, one needs to cluster this set into

smaller, more homogeneous, clusters. However, to ensure that no

advertiser canmanipulate this process, it is crucial that no advertiser

has a large market share in any cluster (see [12] for a theoretical

justification of this statement). Hence, keywords must be clustered

such that no advertiser is over-represented in any cluster.

In addition to the above, there are other settings where an upper

bound on the representation of each group in each cluster can

capture real-world requirements. For example, in clustering news

articles, requiring that no cluster is dominated by a certain view

point or a certain news source is a good way to ensure balance and

diversity in each cluster. Another example is clustering a number of

agents into committees, where it is desirable that no committee is

dominated by agents of a certain background. See Celis et al. [6] for

an example where a similar constraint is applied to the problem of

selecting a single committee maximizing a certain scoring function.

Our contributions. In this paper we formulate the problem of

clustering without over-representation and study its algorithmic

properties. For the clustering part, we focus on the k-center for-
mulation. While there are many different well-studied models for

clustering (such as k-median, k-means, k-center, or correlation clus-

tering), we have picked the k-center model because of its theoretical

simplicity (which allows us to prove good theoretical bounds) as

well as the strong guarantees that are useful in many applications

(that every point in a cluster is close to the center of that cluster).

Our formulation of the problem is in terms of a parameter α that

specifies the maximum fraction of nodes in a cluster that have a

specific value for the protected feature. Our main results are the

following. First, for the case of α = 1/2, we obtain a combinatorial

approximation algorithm. Note that α = 1/2 is a canonical case as

it corresponds to ensuring that no cluster is dominated by a group

with an absolute majority. Second, for the case of general α , we

https://doi.org/10.1145/3292500.3330987
https://doi.org/10.1145/3292500.3330987
https://doi.org/10.1145/3292500.3330987

give an approximation algorithm based on linear programming (LP)

that achieves a bicriteria approximation guarantee. We also prove

that the problem is NP-hard to approximate. Finally, we evaluate

our LP-based algorithm on a number of real data sets, showing that

its performance is even better than the theoretical guarantees.

Related work. Clustering is a classical problem in unsupervised

learning and finds application in a variety of settings (see, e.g., Jain

[19]); examples include information retrieval, image segmentation,

and targeted marketing. The most popular clustering formulation

studies the problem under an optimization objective that minimizes

the ℓp norm for p ∈ {1, 2,∞} corresponding to k-median, k-means,

and k-center, respectively. In this work, our focus is on the k-center
case, which admits a 2-approximation [15, 17] and is NP-hard to

approximate within a factor better than 2 [18].

Fairness in machine learning is relatively new but has received a

significant amount of attention. This includes research on defining

notions of fairness [5, 10, 13, 21] and on designing algorithms that

respect fairness [1, 6, 7, 9, 20, 21, 27]. A recent line of work consid-

ers batch classification algorithms that achieve group fairness or

equality of outcomes and avoid disparate impact [5, 13, 14, 22].

Chierichetti et al. [9] extended the notion of disparate impact to

clustering problems and studied the fair k-center problem in the

case there are only two groups (also called colors). This was later

generalized by Rösner and Schmidt [26] to multiple groups, achiev-

ing a 14-approximation algorithm in the general case. Even with

two colors, the problem is challenging, and the optimum solution

can violate common conventions, e.g., a point may not necessarily

be assigned to the closest open center. The main difference between

our work and that of [9, 26] is that the latter focuses on the problem

of finding a clustering where the distribution of colors is in each

cluster is exactly the same as the distribution of colors over all

given data points, whereas we only require that in each cluster, the

fraction of nodes of each color is at most a given threshold. Note

that requiring exact proportional representation in each cluster is

often prohibitively restrictive. For example, if the number of times

different colors appear in the graph are relatively prime, there is

no non-trivial feasible clustering in the setting of Chierichetti et al.

[9], whereas our formulation often admits non-trivial solutions.

Concurrently and independently, Bera et al. [3] and Bercea et

al. [4] obtained algorithms to convert an arbitrary clustering so-

lution to a fair one, sacrificing both approximation and fairness.

They provide bicriteria approximations for a more general problem

(with upper and lower bound on the representation of a color). Our

algorithm, however, is simpler and we prove (at most) an additive

2 violation for the fairness constraint (improved to 1 for a special

case) in contrast to Bera et al. [3] who prove an additive 4 violation

and Bercea et al. [4] who do not bound the additive violation.

There has been some work on clustering with diversity [24],

where the objective is to ensure each cluster has at least a certain

number of colors; our objective is clearly different from this. The

large body of work on clustering with constraints [2], to the best of

our knowledge, does not address the over-representation constraint.

Outline of the paper. In Section 2 we formalize the problem of

finding an α-capped k-center clustering. In Section 3 we present

our main theoretical result, an LP-based algorithm for the general

α case. Later, in Section 4 we provide a purely combinatorial algo-

rithm for the α = 1

2
case. Then in Section 5 we report the results

of our empirical studies. In Section 6 we show that obtaining a

decomposition in α-capped clusters of minimum cost is hard for

α ≤ 1/2 irrespective of the constraint on the number of clusters.

Finally, in Section 7 we discuss future avenues of research.

2 MODEL AND PRELIMINARIES
In thek-clustering problem, we are given a setD of points in ametric

space with the distance function d(·, ·) and an integer bound k , and
the goal is to cluster the points into at mostk clusters C1, C2, . . . , Ck .

Various clustering problems have been studied and in this paper,

we focus on k-center clustering. We define the problem in terms of

facility location terminology where points are referred to as clients
and clusters are defined by the assignment of clients to centers (also
called facilities). An instance I = (D, F ,d,k) of k-center consists of
a client set D, a facility set F = D, a metric space d : D ×D → R≥0,
and a positive integer bound k . A feasible k-center solution is a pair

(F ′,σ), where F ′ ⊆ F is a set of at most k facilities and σ : D → F ′

is a mapping that assigns each client j to a facility σ (j) ∈ F ′. The
goal is to find a feasible solution that minimizes the maximum
radius or clustering cost defined as λ(F ′,σ) = maxj ∈D d(j,σ (j)). Of
course, in the classic k-center problem, once the set F ′ is deter-
mined, assigning each client to the closest facility in F ′ yields the
assignment with minimum objective. With additional constraints,

however, the closest assignment might be infeasible.

Even though the standard k-center problem is computationally

hard, it admits an elegant 2-approximation algorithm [17]: first

select an arbitrary point as center, then, iteratively pick the next

center to be the point that is farthest from all currently chosen

centers, until k centers are chosen. For completeness, we present

it below (Algorithm 1). In this paper, we consider the α-capped k-

Algorithm 1 Greedy-k-center(I = (D,D ⊆ F ,d,k ≥ 1)).

1: i0 ← an arbitrary client in D.
2: F ′ = {i0}
3: for l ∈ {1, 2, . . . ,k − 1} do
4: il ← argmaxj ∈D mini ∈F ′ d(j, i), the furthest client from F ′

5: F ′ ← F ′ ∪ {il }

6: ∀j ∈ D : σ (j) ← i = argmini ∈F ′ d(i, j)
7: λ← λ(F ′,σ)
8: return ((F ′,σ), λ)

center problem where points have colors and we have a constraint

on the representation of each color in each cluster. More precisely,

in an α-capped k-center instance I = (D, F ,d,k,α, c), in addition

to the input of classical k-center, we are given a fractional bound

α ∈ (0, 1] and a color c(j) for each point j ∈ D. We use Dc to denote

the set of clients of color c . A feasible solution (F ′,σ : D → F ′) is a
feasible k-center solution that satisfies the representation constraint,
which states that for each color c and each facility i , the total number

of clients of color c assigned to i should be no more than α fraction

of all clients assigned to i . This constraint can be written as

∀i ∈ F ′, c : |σ−1(i) ∩ Dc | ≤ α |σ−1(i)|.
The goal in α-capped k-center problem is to find a feasible solution

(F ′,σ) that minimizes

λ(F ′,σ) = max

j ∈D
d(j,σ (j)).

Let (F ∗,σ ∗) be the optimal clustering, and let λ∗ = λ(F ∗,σ ∗) be the
optimal clustering cost. A ρ-approximation algorithm, for ρ ≥ 1,

outputs a clustering (F ′,σ) such that λ(F ′,σ) ≤ ρ · λ(σ ∗,C∗).

3 A GENERAL ALGORITHM
We present a general algorithm to solve the α-capped k-center
clustering problem. The main idea is to first solve a linear program

(LP) relaxation of the problem to obtain a fractional solution and

then modify the fractional solution—sacrificing a little both in the

approximation factor and in the representation constraint—to get

an integral solution. In the course of doing this, we will get what

is called a bicriteria algorithm, i.e., while we get a constant-factor

approximation to α-capped k-center, our solution will violate the α
upper bound mildly. In fact, we can show that for each color and

each facility, there are at most two extra clients in addition to the

allowed number of clients, so the cap is violated additively by at

most two additional nodes—a negligible quantity for a large cluster.

3.1 An LP formulation
For a given distance λ ∈ R≥0, consider the problem of finding a

feasible assignment of clients to facilities in such a way that the

clustering cost of the solution is at most λ. This problem can be

formulated using the following integer program (IP).∑
i∈F xi j ≥ 1 ∀j ∈ D , (1)

xi j ≤ yi ∀i ∈ F , j ∈ D , (2)∑
j∈Dc xi j ≤ α ·

∑
j∈D xi j ∀c ∈ [t], i ∈ F , (3)∑

i∈F yi ≤ k , (4)

xi j , yi ∈ {0, 1} ∀i ∈ F , j ∈ D , (5)

xi j = 0 ∀i ∈ F , j ∈ D , d (i , j) > λ . (6)

Here, the indicator variable yi denotes if facility i ∈ F is open or

not and the indicator variable xi j denotes if client j is assigned to

facility i . Note that by constraint (6), xi j can take non-zero value

only if facility i ∈ F is at distance at most λ from client j ∈ D.
Constraint (2) captures that a facility must be open if it has a client

assigned to it, (3) captures the representation constraint, and (4)

captures that the total number of open facilities is at most k .
Before relaxing the integrality constraint of the above IP, we

strengthen it by adding the following constraint: if a facility i is
open, it has to serve at least ⌈ 1α ⌉ clients to satisfy the representation

constraint. Therefore, every integral solution of the above program

must satisfy the inequality

∑
j ∈D xi j ≥ ⌈

1

α ⌉ · yi .
We consider the following LP obtained by adding this constraint

and relaxing the integrality constraint (5). We use P(λ,α) to denote
the polytope defined by this LP.∑

i∈F xi j ≥ 1 ∀j ∈ D ,

xi j ≤ yi ∀i ∈ F , j ∈ D ,∑
j∈Dc xi j ≤ α ·

∑
j∈D xi j ∀c ∈ [t], i ∈ F , (7)∑

j∈D xi j ≥ ⌈ 1α ⌉ · yi ∀i ∈ F ,∑
i∈F yi ≤ k ,

0 ≤ yi ≤ 1 ∀i ∈ F ,

0 ≤ xi j ≤ 1 ∀i ∈ F , j ∈ D ,

xi j = 0 ∀i ∈ F , j ∈ D , d (i , j) > λ .

As mentioned above, we present a bicriteria algorithm that finds a

solution that might violate the representation constraint, i.e., con-

straint (7). We use the notation P(λ,α,∆), for ∆ ∈ R≥0, to denote

the set of points that satisfy all the constraint for P(λ,α) except con-
straint (7) and only violate that constraint with an additive error of

∆, i.e.,
∑
j ∈Dc xi j ≤ α ·

∑
j ∈D xi j +∆. Note that P(λ,α) = P(λ,α, 0).

3.2 Outline
Recall that λ∗ is the value of the optimal solution to the problem.

Themain idea in our algorithm is that, since the polytopeP(λ∗,α) is
non-empty, by binary search, we can first find the smallest value λ′

such that P(λ′,α) is non-empty (since the set of distances between

pairs of points is finite). Note that the non-emptiness check via

solving the LP also yields a point (x,y) ∈ P(λ′,α), which is a frac-

tional solution to the LP. The plan then is to use (x,y) to construct

a feasible integral solution in a slightly larger polytope, namely,

(x ′′,y′′) ∈ P(3λ′,α, 2), where x ′′,y′′ are integral and hence will

correspond to a valid solution to the k-center problem.

Theorem 3.1. Given an instanceI ofα -cappedk-center clustering,
there is a polynomial time algorithm that finds a solution (F ′,σ) of
cost at most 3λ∗ such that

|σ−1(i) ∩ Dc | ≤ α · |σ−1(i)| + 2.

In the case of 1/α ∈ Z, we can actually improve the additive term to 1
and in term of multiplicative bound we get |σ−1(i)∩Dc | ≤ 2α |σ−1(i)|.

To prove Theorem 3.1, the integral solution (x ′′,y′′) is con-

structed from (x,y) in two steps. In the first step, we construct

a solution (x ′,y′) ∈ P(3λ′,α) using (x,y), where y′ is integral.
This step can be thought of as determining which facilities to open

based on the fractional solution. In the second step, we construct

an integral solution (x ′′,y′′) ∈ P(3λ′,α, 2). This step uses the open
facilities to define a suitable maximum flow problem to obtain an

assignment of clients to facilities. We describe these two steps.

3.3 Finding facilities to open
The goal in this step is to find (x ′,y′) ∈ P(3λ′,α) where y′ is
integral. Let F ′ ⊆ F be a maximal subset of facilities such that any

two facilities i, i ′ ∈ F ′ are at least distance 2λ′ from each other,

i.e., d(i, i ′) > 2λ′. We open all facilities in F ′, i.e., set y′i = 1 for

i ∈ F ′ and y′i = 0 for i < F ′. Note that if λ′ is a correct guess of
the optimum, none pair of clients at locations in F ′ can be served

by the same center and so the size of F ′ is smaller than or equal

to k . Next, we show how to define x ′. We essentially transfer the

fractional assignment of clients from F to F ′. First we define a

mapping θ : {i ∈ F | y′i > 0} → F ′ as

• If i ∈ F ′, then θ (i) = i .
• If i < F ′, then θ (i) = i ′ where i ′ ∈ F ′ with d(i, i ′) < 2λ′.
(Such an i ′ exists by the maximality of F ′.)

Now for each client j ∈ D, we can define

x ′i j =

{ ∑
i′∈θ−1(i) xi′j i ∈ F ′

0 otherwise.

We now show that (x ′,y′) has the desired properties.

Lemma 3.2. (x ′,y′) ∈ P(3λ′,α) and y′ is integral.

Proof. Let us first show that x ′i j can only take non-zero value

if facility i is at distance 3λ′ from it. If x ′i j is non-zero, then there

exists a facility i ′ where θ (i ′) = i and xi j > 0. Since xi j > 0, we

get that d(i ′, j) < λ′ and since θ (i ′) = i , d(i, i ′) < 2λ′, so by the

triangle inequality, we have d(j, i) ≤ 3λ′. Since x ′ is just rerouting
the assignment of clients from facilities in F to F ′, yi = 1 for

all facilities in F ′, and F ′ has at most k facilities, (x ′,y′) satisfy
Constraints (1), (2), and (4). Constraint (3) is satisfied since for each

i ∈ F ′, c ∈ [t],∑
j ∈Dc

x ′i j =
∑

i′∈θ−1(i)

∑
j ∈Dc

xi′j ≤ α ·
∑

i′∈θ−1(i)

∑
j ∈D

xi j = α ·
∑
j ∈D

x ′i j ,

where the inequality follows from the definition of θ . □

3.4 Assigning clients to facilities
The goal in this step is to construct a solution (x ′′,y′′) ∈ P(3λ′,α, 2)
such that x ′′, y′′ are integral. In fact, x ′′i j > 0 only if x ′i j > 0. We let

(x ′′,y′′) be the solution to the following maximum flow problem

and use the fact that a network with integral bound on edges and

integral demands, if feasible, always has an integral solution.

Construct a flow network (V ,A) as follows:

• V = {s, t} ∪ D ∪ {(i, c) | i ∈ F ′, c ∈ [t]}.
• A = A1 ∪ A2 ∪ A3 ∪ A4 where A1 = {(s, j) | j ∈ D} with
capacity 1,A2 = {(j, (i, c)) | j ∈ Dc , x

′
i j > 0}with capacity 1,

A3 = {((i, c), i)} with lower bound ⌊
∑
j ∈Dc x

′
i j ⌋ and capacity

⌈
∑
j ∈Dc x

′
i j ⌉, andA4 = {(i, t)} with lower bound ⌊

∑
j ∈D x ′i j ⌋

and capacity ⌈
∑
j ∈D x ′i j ⌉.

Note that (x ′,y′) is a feasible flow of value |D |, so there is an integral
flow of value |D | such that a client j sends a flow to a facility i if
x ′i j > 0. Thus x ′′i j > 0 only if client j is at distance 3λ′ from facility i .

This concludes the steps of our algorithm (Algorithm 2). It remains

Algorithm 2 Fair-k-center(I = (D, F ,d,k),α, λ).

1: (x,y) ← a feasible solution of P(λ,α)
2: if P(λ,α) is empty then
3: return (∅, ∅)
4: F ′ ← a maximal subset of F where ∀i , i ′ ∈ F ′ : d(i, i ′) > 2λ
5: (x ′,y′) ← client reassignment based on F ′ (Section 3.3)

6: (x ′′,y′′) ← client assignment based on max flow in network

(V ,A) (Section 3.4)

7: F s ← {i | y′′i > 0}

8: ∀j ∈ D: σ s (j) ← i where x ′′i j > 0

9: return (F s ,σ s)

to bound the violation of the representation constraint.

Lemma 3.3. For any color c and any facility i ,
∑
j ∈Dc x

′′
i j ≤ α ·∑

j ∈D x ′′i j + 2 where the additive term can be improved to +1 for
1/α ∈ Z+.

Proof. Let T ′ =
∑
j ∈Dc x

′
i j , B

′ =
∑
j ∈D x ′i j , T

′′ =
∑
j ∈Dc x

′′
i j ,

and B′′ =
∑
j ∈D x ′′i j . Since (x

′,y′) is a feasible solution of P(λ′,α),

we have T ′ ≤ α · B′. Using the lower bounds and upper bounds

on the edge ((i, c), i) ∈ A3, we know that ⌊T ′⌋ ≤ T ′′ ≤ ⌈T ′⌉ and

⌊B′⌋ ≤ B′′ ≤ ⌈B′⌉. Since ⌈T ′⌉ < T ′ + 1, we can bound T ′′ in terms

of B′′ as follows:

T ′′ < T ′ + 1 ≤ αB′ + 1 ≤ αB′′ + α + 1 ≤ αB′′ + 2.

Now suppose α = 1/m for somem ∈ Z+ and suppose B′′ = p ·m+r
for r < m. Then, αB′′ + α = p + r+1

m . If r < m − 1, then the largest

integer smaller than αB′′ + α + 1 is p + 1 ≤ αB′′ + 1. If r =m − 1,
then αB′′ + α + 1 = p + 2, now since T ′′ < p + 2, it follows that
T ′′ ≤ p + 1 ≤ αB′′ + 1. □

We can bound the cost of the solution, in terms of violating the

representation constraint multiplicatively as follows.

Corollary 3.3.1. For any color c and facility i ,
∑
j∈Dc x

′′
i j∑

j∈D x ′′i j
≤ 2α

for 1/α ∈ Z+.

Proof. Since B′′ ≥ ⌊B′⌋ ≥ ⌊ 1

1/m ⌋ =m, the +1 term in the last

line of the proof of Lemma 3.3, can be bounded by αB′′. □

4 AN ALGORITHM FOR α = 1/2

In this section, we present a simple, combinatorial approximation

algorithm for the important special case of α = 1/2. This case

corresponds to finding a clustering of the points such that no color

is the absolute majority in any cluster, i.e., every color in a cluster

occurs at most half of the times as the cluster size. To proceed, we

need two notions, namely, caplets and threshold graphs.

Caplets. LetG be any graph whose set of nodes is D. A caplet inG
is a subset K ⊆ D, 2 ≤ |K | ≤ 3 with distinct colors, i.e., c(j) , c(j ′)
for j , j ′ ∈ K . Since caplets can have either size two or three,

we call the former case an edge caplet and the latter a triangle
caplet. For two caplets K1 and K2, let dist(K1,K2) be defined as

the minimum distance between pair of points of the two caplets,

i.e., dist(K1,K2) = minj1∈K1, j2∈K2
d(j1, j2). Note that the distance

function defined on caplets is not necessarily a metric but will be

useful to bound the distance between points belonging to different

caplets. The diameter of a caplet K is diam(K) = maxj , j′∈K d(j, j ′).
The diameter of a set K of caplets is diam(K) = maxK ∈K diam(K).

A caplet decomposition κ(G) of a connected graph G, if it exists,
is a set of edge caplets and at most one triangle caplet such that

each node in G is present in exactly one caplet. Note that the only

time when a caplet decomposition uses a triangle caplet is when the

number of nodes inG is odd. The caplet decomposition can be found

in polynomial time by guessing the triangle if the size of graph

is odd, and then finding the perfect matching on the remaining

vertices.

Threshold graph.GivenD, a thresholdτ > 0, we define a threshold
graph G(τ) = (D, E) to be an undirected graph on the points in D,
where (j, j ′) ∈ E iff they have different colors and they are at

distance at most τ from each other, i.e., c(j) , c(j ′) and d(j, j ′) ≤ τ .

4.1 Algorithm
First of all, we assume that we know the optimal value λ∗ = λ(σ ∗).
This is without loss of generality since by definition ofk-center, λ∗ ∈
{d(i, j) | i ∈ F , j ∈ D}. Hence an algorithm can enumerate over

the set of all possible values for λ∗; at worst, this enumeration only

costs an additional factor |F | · |D | in the running time.
1
Assuming

we know λ∗, the idea is to create the threshold graph with 2λ∗ as
the threshold, and then to decompose it into caplets. Finally, the

caplets can be clustered using the greedy algorithm for k-center.
The steps are presented in Algorithm 3.

Algorithm 3 Non-dominant-k-center(I = (D, F ,d,k),α = 1/2).

1: for λ ∈ {d(i, j) | i ∈ F , j ∈ D} in non-decreasing order do
2: D ′ ← ∅
3: for Connected component C of G(2λ) do
4: GC ← (C, E ′) where E ′ = {(j, j ′) | c(j) ,

c(j ′), d(j, j ′) ≤ 10λ}
5: if no caplet decomp. for GC then
6: reject λ and continue to next λ

7: D ′ ← D ′ ∪ {jK | arbitrary client jK ∈ K ∈ κ(GC)}

8: ((Fд,σд), λд) ← Greedy-k-center(I ′ = (D ′, F ,d,k))
9: if λд > 2λ then
10: reject λ and continue to next λ

11: ∀j : σ s (j) ← σд(jK) where j, jK ∈ K .
12: return (Fд,σ s)

Note that our approach is similar in spirit to the fairlet decompo-

sition approach proposed in [9]. However, since our representation

constraint is less stringent than the fair clustering constraint, as

we will see, the reasoning becomes more delicate and involved.

To show that Algorithm 3 obtains a provably good approxima-

tion, we show a key characterization: there is a caplet decomposition

of each connected component of G(2λ∗) with small diameter.

Lemma 4.1. For each connected component C of G(2λ∗), there is a
caplet decomposition κ(C) such that diam(κ(C)) ≤ 10λ∗.

Before proving the lemma, we use it to show that Algorithm 3

gives a good approximation.

Theorem 4.2. Algorithm 3 finds a (1/2)-capped k-clustering solu-
tion of cost at most 12λ∗.

Proof. Using Lemma 4.1, we know that the if statement (line 3

in Algorithm 3) fails for λ∗. Furthermore, since the optimal capped

clustering yields a feasible solution for the k-center instance I and
there is a 2-approximation algorithm fork-center, a feasible solution
can be found for λ = λ∗ (line 7). Therefore the loop terminates

successfully (line 8) for some λ ≤ λ∗.
We next show we get a valid (1/2)-capped clustering. For each

color c , note that the number of points of color c assigned to facility
i ∈ F is at most the number of caplets assigned to i . However, by
definition, each caplet is of size at least two and has distinct colors.

Therefore, no color can be the absolute majority for each i ∈ F ;
this proves the (1/2)-capped property. The cost of clustering is a

12-approximation since each point j in a caplet K assigned to a

facility i is at most at distance 2λ from jK and d(jK , j) ≤ 10λ since

diam(K) ≤ 10λ by Lemma 4.1. The proof is complete as λ ≤ λ∗. □

1
One can also get an 1 + ϵ approximation of the optimum λ∗ in logarithmic many

tries with standard techniques.

4.2 Analysis
We now prove Lemma 4.1. Let C be a connected component of

G(2λ∗). There are two steps in the proof. In the first step, we

find a set Ki of caplets with respect to each facility i such that

diam(κ(Ki)) ≤ 2λ∗. In the second step, we collect the caplets

κ(Ki) for each i ∈ F from the first step and appropriately mod-

ify them to obtain a caplet decomposition κ(K) of C such that

diam(κ(K)) ≤ 10λ∗. (If we naively take the union of the caplets for

i ∈ F we may not get a valid caplet decomposition of C since we

might have more than one triangle caplet, violating the definition.)

The first step is relatively straightforward. Indeed, consider the

optimal solution with open facilities F ∗ and an assignment σ :

D → F ∗. Since for each open facility i ∈ F ∗, the number of points

with the same color is less than half of the points assigned to i , if
|σ−1(i)| has even size, we can define a matching between points

of different colors in σ−1(i). If |σ−1(i)| is odd, then there are at

least three colors present in σ−1(i). Define the triangle to include

three points of different colors and the rest of points in σ−1(i) can
be matched to points of different colors. This yields Ki with the

property that it has at most one triangle caplet. Furthermore that

since all the points in σ−1(i) are at distance at most λ∗ from i , by
the triangle inequality, any two points in σ−1(i) are at distance at
most 2λ∗ from each other. Therefore, these points will belong to

the same connected component of G(2λ∗). Let ˜KC = ∪i ∈F ∗Ki ∩C .
Next, we consider the second step. For this, it is helpful to work

with the graph G ′ = (˜KC , E) such that for K,K ′ ∈ ˜KC , we have

(K,K ′) ∈ E if dist(K,K ′) ≤ 2λ∗. Notice that G ′ is connected since

it is constructed from C .
The goal is to transform the caplets obtained in the first step into

a valid caplet decomposition of C . This is done by finding a path

between two triangle caplets and “shifting” points to get a new set

of edge caplets, sacrificing some in the distance between caplets.

Fix C henceforth.

FromC , we construct a set P of disjoint paths with the following

properties: each path in P is of the form K0, . . . ,Kℓ where (i) K0

and Kℓ are triangle caplets and Ki , 1 ≤ i < ℓ are edge caplets, (ii)
dist(Ki ,Ki+1) ≤ 6λ∗, and (iii) diam(Ki) ≤ 2λ∗. Let T be a minimal

rooted tree spanning the nodes corresponding to triangle caplets

in C . Note that all the leaves in T correspond to triangle caplets

and the internal nodes in T may be edge or triangle caplets. We

perform a bottom-up procedure on T , removing paths from T and

adding them P in an iterative manner; the procedure ends when T
has at most one triangle caplet. Let Tf denote the rooted subtree of

T rooted at a node f . In the bottom-up procedure, we maintain the

property that for each scanned node f there is at most one triangle

caplet in Tf . Note this property is already satisfied at the leaves.

Let K be the deepest node in the current tree that does not satisfy

this property. If K has more than one child, let p1 = (K,K1, . . . ,Kr)
and p2 = (K,K

′
1
, . . . ,K ′s) be two paths starting at K and ending at

triangle caplets Kr and Ks . Note that the degree of internal nodes
on p1 and p2 is exactly two by the choice of K . We add the path

p = (Kr ,Kr−1, . . . ,K1,K
′
1
,K ′

2
, . . . ,K ′s) to P and remove the edges

of p1 ∪ p2 from T . Since K1 and K
′
1
are at distance 2λ∗ from K and

points inside K are at distance at most 2λ∗ from each other, K1

and K ′
1
are at distance at most 6λ∗ from each other. We continue

this procedure until K has at most one child. If K is a leaf, then we

Figure 1: Construction of a path (dashed line) in P . The trian-
gle nodes are triangle caplets and the square nodes are edge
caplets.

remove if it is an edge caplet and leave it in T if otherwise. Else,

let K ′ be the sole child of K . If K ′ is an edge caplet, we remove K ′

from T . If both K and K ′ are triangle caplets, we add them to P
and remove both of them from T . We continue the procedure until

we reach the root and at the end of this, there exists at most one

triangle caplet that is not covered by a path in P . It is also easy to see
that each path in P satisfies the desired properties. (See Figure 1.)

Now consider each p = (K0,K1, . . . ,Kℓ) ∈ P . Recall from prop-

erty (i) above that K0 and Kℓ are triangle caplets and the rest are

edge caplets. We define a new set of edge caplets K ′
0
, . . . ,K ′

ℓ+1
as

follows. We pick an arbitrary point i0 from K0 and shift it to the

next caplet K1 and then shift some point from K1 to the next caplet,

and so on. More precisely, let i0 be an arbitrary point in K0, de-

fine K ′
0
= K0 \ {i0} and let K ′

1
= {i0, i

′
1
} where i ′

1
is point in K1

with different color than i0. We continue the process iteratively,

where at each step r , we define the edge caplet K ′r+1 to contain

point ir in Kr not covered by K ′
0
,K ′

1
, . . . ,K ′r for (r < ℓ), and point

i ′r+1 in Kr+1 with different color than ir . In the last step, a point

i ′
ℓ−1
∈ Kℓ−1 is shifted and matched to a point iℓ ∈ Kℓ and we define

K ′
ℓ+1
= Kℓ \ {iℓ}. Note this process is possible since each caplet Kr

contains at least two points of different colors, there always exists a

point that has a different color than the shifted point. (See Figure 2.)

By properties (ii) and (iii) above, the diameter of each caplet is at

most 2λ∗ and two consecutive caplets are at distance at most 6λ∗

from each other. Applying the triangle inequality, we get that the

diameter of the caplets in K ′
0
, . . . ,K ′

ℓ+1
is at most 10λ∗.

Figure 2: The shifting operation in action on a path of four
caplets, beginning and ending with a triangle caplet. The
solid lines denote the original caplets and the dotted lines
denote the new caplets after the shifting operation.

Dataset # Points # Dim. # Colors Max ratio
4area 25,853 8 4 40.2

query > 29,000 20 > 12,000 < 7.0%

reuters 2500 10 50 2.0%

victorian 4500 10 45 2.2%

Table 1: Datasets used. Column # Dim. reports the number
of dimensions of the space used and column max ratio rep-
resents the maximum ratio of a color in the dataset.

5 EMPIRICAL EVALUATION
In this section we empirically evaluate our algorithms on several

publicly-available datasets from the UCI Repository
2
and DBLP

3
, as

well as on a proprietary dataset related to online auctions. In our

empirical analysis we focus on the LP-based algorithm (Section 3).

We describe the datasets used, the baselines we consider, the quality

measures we compute, and finally the results.

5.1 Datasets
The datasets reported in Table 1 come from different domains and

represent Euclidean spaces with dimensions ranging from 8 to 20

as well as a wide range of colors (between 4 and > 12,000). The

datasets report different levels of balance of color distribution, from

complete balance (each color is equally represented in the whole

dataset) to high imbalance (> 40% of points of one color).

We now describe more in detail the datasets used. We obtained

two datasets (reuters, victorian) from text embeddings of multi-

author datasets, one from a co-authorship graph embedding (4area),
and one from online auctions (query). All datasets represent points
in the Euclidean space and we always use the ℓ2 distance.

(i) reuters4. It contains 50 English language texts from each of 50

authors (for a total of 2,500 texts). We transformed each text into

a 10-dimensional vector using Gensim’s Doc2Vec with standard

parameter settings. Here, the colors represent the author of the

text. We observe that clustering doc2vec embeddings has been used

extensively in language analysis (see, e.g., [8]).

(ii) victorian5. It consists of texts from 45 English language au-

thors from the Victorian era. Each text consists of 1,000-word se-

quences obtained from a book of the author (we use the training

dataset). The data has been extracted and processed in [16]. From

each document, we extract a 10-dimensional vector using again

Gensim’s doc2vec with standard parameter settings and we use the

author as color. We use 100 texts from each author.

(iii) 4area 3. It contains 25,853 points in 8 dimensions representing

each a researcher in one of four areas of CS: data mining, machine

learning, databases, and information retrieval. The color is the main

area of research of the author. The points are obtained by using

the graph embedding method DeepWalk [25] on the undirected

co-authorship graph of 4area, using default settings.

(iv) query. It is a representative subset of an anonymized propri-

etary dataset. Each point in this dataset represents a bag of queries

2
http://archive.ics.uci.edu/ml

3
http://dblp.uni-trier.de/xml/

4
Available at archive.ics.uci.edu/ml/datasets/Reuter_50_50

5
Available at archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution

http://archive.ics.uci.edu/ml
http://dblp.uni-trier.de/xml/
archive.ics.uci.edu/ml/datasets/Reuter_50_50
archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution

in an online auction environment. The points have 20 dimensions

and are obtained with a proprietary embedding method that en-

codes semantic similarity. The color of the point is the anonymous

id of the main advertiser of the submarket represented by the bag.

5.2 Experimental setup
5.2.1 Baselines. We use the following two baselines.

(i) Greedy. Because the k-center problem is NP-hard, even without

the additional constraint of being α-capped, we use the well-known
k-center greedy method, which ignores the representation con-

straint, as a gold standard. Notice that this algorithm returns a

2-approximation of the cost of the optimum (without representa-

tion constraint) which is always lower than the optimum cost of

our problem. To further strengthen the baseline, we post-process

the output apply a round of the standard Lloyd iterative algorithm,

with k-center cost. This step can only improve the results. We use

this method as a gold standard baseline to evaluate the increased

cost incurred by our algorithm to enforce the representation con-

straint and we measure how much our algorithm improves the

representation constraint bound of the clusters.

(ii) Random. We also compare against the baseline of sampling k
random points as centers and assigning all points to the nearest

center selected. Because this method depends on randomness (while

all other algorithms are deterministic), we rerun the algorithm ten

times and report the average results. Notice that this algorithm as

well does not (necessarily) respect the capped constraints.

5.2.2 Measures of quality. We evaluate the following measures of

quality for a clustering.

Cost. We measure the maximum distance of a point to the nearest

center in the solution. In particular, we compare the cost of the

solution output by our α-capped k-clustering algorithm, (for a

certain α), and the solution of the baselines for the same k .

Additive violation of representation constraint. Recall that
our algorithm in Section 3 can output a solution mildly violat-

ing the representation constraint. We wish to study how big is this

violation in practice. To this end, let C be a cluster in the solution

output of an α-capped clustering instance. The maximum allowed

number of points of a certain color in the cluster C is ⌊|C |α⌋. We

let ∆ = maxC ,c max(|C ∩Dc | − ⌊|C |α⌋, 0) be the maximum additive

violation of the α-capped constraint, over any cluster C and any

color c . Our algorithm, provably, has an additive violation ∆ of at

most 2 point. We also evaluate the additive violation of the output

of the greedy algorithm and random.

5.2.3 Implementation details and parameters of the algorithm. We

now describe the main parameters of the algorithm in Section 3. The

algorithm takes in input k , α , representing the number of centers

allowed and parameter of the α-capped constraint. To find a small

λ for which the polytope P(λ,α) gives a feasible solution, instead of
binary search, we use following method. We obtain a lower bound

on the cost the clustering by running the greedy k-center algorithm

and using
λ′
2
as a lower bound, where λ′ is the cost of the solution

found (this is provably a lower bound of the cost for our problem).

We also bound the maximum distance of two points by λ′′ (e.g., by
using 2 times the maximum distance of a fixed point to any other

point) and iterate over a grid Λ that is exponentially increasing by

a (1 + ϵ) multiplicative factor between these two extremes,

Λ =

{
λ′

2

,
λ′

2

(1 + ϵ),
λ′

2

(1 + ϵ)2, . . . , λ′′
}
,

to find the smallest feasible λ. Notice that a solution is found unless

the problem is infeasible (i.e., α is lower than the maximum fraction

of points of a color). This allows us to check the LP feasibility with

lower λ’s first, which is better since checking feasibility becomes

computationally more expensive as λ increases.

Algorithm 4 FasterAlgorithm(I = (D, F ,d,k), ϵ,m).

1: λ′′ ← maxj ∈D d(i0, j) for arbitrary i0 ∈ D
2: ((F ′,σ ′), λ′) ← Greedy-k-center(I = (D, F ,d,k))
3: ((Fc ,σc), λc) ← Greedy-k-center(Ic = (D, F ,d,m ∗ k))

4: for λ ∈ { λ
′

2
, λ
′

2
(1 + ϵ), λ

′

2
(1 + ϵ)2, . . . , 2 ∗ λ′′} do

5: (F s ,σ s) ← Fair-k-center(I ′ = (D, Fc ,d,k), λ).
6: if (F s ,σ s) is non-empty then return (F s ,σ s)

Finally, to speed-up the computation, we restrict the variables

yi ,xi j that we create to be non-zero only for i ∈ F ′ ⊆ F where F ′ is
a core-set of the dataset, obtained by running the greedy algorithm

to selectm×k facilities. Notice that usingm ≥ 1 results, provably, in

a constant factor approximation algorithm. We evaluate the effect

of ϵ = 0.1, 0.5, and experiment withm ≥ 2.

All our computations are run, independently, each on a single

machine, from a proprietary Cloud, using Google’s Linear Opti-

mization Package (GLOP) as our LP solver, and a maximum flow

solver in C++. Both packages are available in Google’s OR tools.
6

5.3 Experimental results
Comparison with the baselines. In Table 2, we report, for various

α factors, a comparison of the quality of the output of our algorithm

with that of the baselines. In this table, we fix the parameters:k = 25,

ϵ = 0.1,m = 2 and show results for all datasets and representative

α ’s that are close to the maximum color ratio of a color in each

dataset (there is no feasible solution for α ’s lower than this ratio).

First, we evaluate the ratio of the cost (i.e., the maximum distance

of a point to its center) of the solution obtained by our algorithm

to that of the greedy algorithm. Notice that in all datasets our

algorithm reports a cost that is relatively close to the unconstrained

greedy algorithm and is usually between +10% worse and up to 2x

worse. Interestingly, despite the fact that the unconstrained problem

can have a much better optimum cost, we can sometimes obtain

costs that are at most 10–50% larger than of the unconstrained

solution (which in turn is lower than the actual optimum value

for our problem). This result is better than that predicted by the

worst-case theoretical analysis (where we show a 3x factor). This

improvement occurs even for α very close to the strongest possible

representation constraint for which there is a solution.

In Table 2, we also evaluate the maximum additive violation

of the color cap constraint for our algorithms as well as the base-

lines. As proved formally, the maximum additive violation for our

algorithm (∆) is at most 2 for general α ’s (and 1 for the case of

integer 1/α). We observe interestingly that it is always 1 in our

6
https://developers.google.com/optimization/

https://developers.google.com/optimization/

Dataset α Cost vs

Greedy

Cost vs

Random
∆ ∆G ∆

Rand

4area 0.45 +62% +50% 1 32 660

0.50 +67% +55% 1 19 552

0.60 +62% +50% 1 6 338

0.70 +64% +52% 0 2 124

0.80 +64% +52% 0 0 0

query 0.07 +6% +7% 1 132 66

0.08 +6% +7% 1 9 46

0.09 +6% +7% 0 7 26

0.10 +6% +7% 0 4 6

reuters 0.02 +80% +44% 1 35 38

0.05 +75% +40% 1 29 35

0.10 +53% +22% 1 24 29

0.20 +7% -15% 1 17 18

0.30 -3% -23% 1 15 10

0.40 +31% +4% 0 12 8

0.50 -3% -23% 0 9 6

victorian 0.05 +109% +26% 1 62 57

0.10 +45% -13% 1 56 38

0.20 +39% -17% 1 43 9

0.30 +63% -2% 1 30 0

0.40 +45% -13% 1 17 0

0.50 +45% -13% 0 10 0

Table 2: Comparison of the cost and maximum additive vi-
olation of representation constraint for our algorithm, as
well as the baselines, over various datasets and α factors,
for k = 25, ϵ = 0.1, m = 2. We report the ratio of the cost
of our algorithm’s solution with respect to both the greedy
algorithm (Cost vs Greedy) and the random baseline (Cost
vs Random); the maximum additive violation for our algo-
rithm (∆), the maximum additive violation of the greedy al-
gorithm (∆G), and of the random baseline (∆

Rand
).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

R
a
ti
o
 v

s
 G

re
e
d
y

Alpha

k=10
k=20
k=50

k=100

(a) Setting ϵ = 0.1

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

R
a
ti
o
 v

s
 G

re
e
d
y

Alpha

k=10
k=20
k=50

k=100

(b) Setting ϵ = 0.5

Figure 3: Cost of the solution vs Greedy baseline for various
α , k over the reuters dataset, using ϵ = 0.1, 0.5,m = 2.

experiments. Note instead that the baselines, which do not take

into account the constraint, can incur very large additive violations

of up to hundreds of points. This result confirms the importance of

using algorithms specifically designed for this problem.

Effect of the parameters. We now study more in detail the effect

of the main parameters k,α, ϵ,m on the quality of the clustering.

Figures 3(a) and 3(b) show the ratio of the cost of the solution

over the cost of the greedy baseline, for various α ranges, and

distinct k’s, in the reuters dataset. Here, we compare the setting

ϵ = 0.1 (Figure 3(a)) and ϵ = 0.5 (Figure 3(b)). Notice how the

approximation ratio (over greedy) is always ⪅ 2 for the ϵ = 0.1

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

R
a
ti
o
 v

s
 G

re
e
d
y

k

2k
3k
4k

(a)

 1

 10

 100

 1000

 10000

 10
 100

T
im

e
 R

a
ti
o
 v

s
 F

a
s
te

s
t
R

u
n

k

alpha=0.45
alpha=0.50
alpha=0.6
alpha=0.7

Figure 4: (a) Cost of the solution vs Greedy baseline for var-
ious k andm over the reuters dataset, using α = 0.05, ϵ = 0.1.
(b) Time vs k and α for 4area dataset, ϵ = 0.5,m = 2. We re-
port the ratio of running time of a given instance over the
the fastest instance.

case and ⪅ 3 for ϵ = 0.5 case. As is expected, notice that larger

α ’s are associated with lower cost ratios (it is easier to find a low

cost solution with higher α). Finally, despite the pattern being less

strong, we observe generally larger ratios for larger k’s.
In Figure 4(a) we evaluate the effect of them factor used in the

core-set to reduce the number of yi ’s variables tom×k . Notice how
generally largerm’s are associated with lower cost (ratio), but the

algorithm obtains good results even withm = 2, allowing to use

small LP instances in our algorithm.

Time. In Figure 4(b) we show how the running time is affected

by k and α . As expected, larger k’s correspond to increased running
times. Similarly, larger α ’s mostly correspond to lower running

time because it is easier to find a solution with larger α and hence

fewer λ ∈ Λ need to be evaluated to find a non-empty P(λ,α).

6 HARDNESS
In this section, we complement our algorithmic results by proving

a factor-2 approximation hardness for minimizing the k-center
cost of a α-capped clustering, of arbitrary number of cluster, for

α ∈ (0, 0.5]. This shows the hardness of α-capped clustering, with

k-center objective, even allowing arbitrary many clusters.

As in [9], we use a reduction from the t-Star-Decomposition
problem defined as follows. Given an undirected n-vertex graph

G = (V , E), and a positive integer t , can V be partitioned into pair-

wise disjoint subsetsV1, . . . ,Vn/t so that |Vi | = t andG[Vi] contains
a star of size t , i.e., a center and t−1 leaves? Twowell-known special
cases of t-Star-Decompositionare the case t = 2 (finding a perfect

matching) and the case t = 3 also known as P3-decomposition (find-

ing a partition into connected triplets). Since a perfect matching can

be found in polynomial time, t-Star-Decompositionis tractable for
t = 2. Kirkpatrick andHell [23] showed that t-Star-Decompositionis
NP-hard for t ≥ 3. t-Star-Decompositionremains NP-hard [11] even

if the graph is planar and bipartite, for any t ≥ 3. In our proofs we

will use that the problem is NP-hard.

Our reduction starts from input G of a t-Star-Decomposition in-

stance, and defines a set D of points in a metric space with distance

function d(·, ·) and a color assignment c(j) for each point j ∈ D.
More precisely, we construct a graph G ′ = (D, E ′) and define the

metric space to be the shortest path metric where edges have unit

length. Before proceeding to the main hardness result, we explain

how graph G ′ is constructed in polynomial time from the bipar-

tite graph G = (V1 ∪V2, E) input of t-Star-Decomposition. In the

following we use the word point and vertex interchangeably.

Construction of the graphG ′. The construction ofG ′ depends on
the solution to the following system of linear equations:

2tr + 1tb = |V1 | and 1tr + 2tb = |V2 | (8)

Since this is a system of two equations in two variables, and the

determinant of the system is non-zero, there exists a unique solution

(tr , tb). If the unique solution has at least a variable that is not a

non-negative integer, we construct G ′ as a trivial instance with no

fair coverage (say one red node). For the rest of the construction we
assume we are in the case that tr , tb are both non-negative integers.

First we define the construction for the α = 1

2
, case then we

show how to extend this to the α = 1

2+t case for any integer

t > 0. In the α = 1

2
case, the construction proceeds as follows. The

graph G ′ = (V ′, E ′) has four layers of nodes L1, L2, L3, L4, where
each layer Li consists of two disjoint sets Ri ,Bi of respectively of

color red and blue. The layer L1 has a 1-to-1 correspondence with
nodes in V . More precisely, L1 consists of R1 ≡ V1 and B1 ≡ V2,
corresponding to the two sides of the graphs G and two nodes in

L1 are connected in E ′ iff their equivalent nodes are connected in

E. Then, L2 consists of R2,B2 such that |R2 | = |R1 |, |B2 | = |B1 |. In
E ′, there is a matching between each node in R2 (resp. B2), and a

node in R1 (resp. B1). Now let ub = |B2 | − tr and ur = |R2 | − tb .
Notice that from the Equations (8) ub ,ur are non-negative integers.
Layer L3 has components B3,R3 of size |B3 | = ub , R3 = ur and

E ′ contains a complete bipartite graphs between sides R2,R3 and
another complete bipartite graph between sides B2,B3. Finally layer
L4 consists of R4,B4 such that |R4 | = 2|B3 | and |B4 | = 2|R3 | and
each node in R3 is connected with exactly two nodes in B4 (resp.
each node in B3 is connected with exactly two nodes in R4). This
completes the construction for the α = 1

2
case, for the general

α = 1

2+t we add to each layer L2 and L4, t disjoint sets C
t
i (i =

2, 4) such that all nodes in Ct
i have color ct (distinct from red and

blue). For each t , |Ct
2
| = 2(tr + tb) and C

t
2
is further subdivided in

two disjoint parts Ct
2,r , C

t
2,b such that |Ct

2,b | = 2tb , |C
t
2,r | = 2tr ,

and B1,C
t
2,b for a complete bipartite graph (reps. R1,C

t
2,r form a

complete bipartite graph). Finally for each t , |Ct
4
| = 2|L3 | and each

node in L3 is connected with exactly 2 nodes in Ct
4
.

The following states our main hardness result for α ∈ (0, 0.5].

Theorem 6.1. It is NP-hard to approximate the α-capped cluster-
ing with k-center objective with α ∈ (0, 0.5] within a factor better
than 2.

The theorem follows from the following two lemmas, whose

proofs are deferred to the extended version of the paper.

Lemma 6.2. Fix t ≥ 0 integer. Suppose the bipartite graphG admits
a t-Star-Decomposition, then G ′ has a 1

2+t -capped clustering of k-
center cost 1.

Lemma 6.3. Fix t ≥ 0 integer. If there exists a solution of k-center
cost at most 2 to 1

2+t -capped clustering ofG
′, then the bipartite graph

G admits a t-Star-Decomposition.

7 CONCLUSIONS
Clustering with color constraints is an algorithmic take on ensuring

balance and fairness in applications. In this paper we addressed

capped clustering, which is the problem of finding the best cluster-

ing where no cluster has an over-represented color. We obtained

provably good algorithms for this problem; our experiments show

that the algorithms are effective on different real-world datasets.

While our general algorithm is based on solving an LP, it can be

challenging for large number of points. It is an interesting question

to develop a combinatorial algorithm for the general case that can

scale to large datasets. It is also interesting to improve the bounds

guaranteed by our algorithms and extend them to other clustering

objectives such as k-means and k-median.

REFERENCES
[1] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and

Tal Wagner. 2019. Scalable Fair Clustering. In ICML.
[2] Sugato Basu, Ian Davidson, and Kiri Wagstaff. 2008. Constrained Clustering:

Algorithms, Applications and Theory. CRC Press.

[3] Suman K Bera, Deeparnab Chakrabarty, and Maryam Negahbani. 2019. Fair
Algorithms for Clustering. Technical Report 1901.02393. arXiv.

[4] Ioana O. Bercea, Martin Gross, Samir Khuller, Aounon Kumar, Clemens Rösner,

Daniel R. Schmidt, and Melanie Schmidt. 2018. On the cost of essentially fair
clusterings. Technical Report 1811.10319. arXiv.

[5] Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for

discrimination-free classification. DMKD 21, 2 (2010), 277–292.

[6] L Elisa Celis, Lingxiao Huang, and Nisheeth K Vishnoi. 2018. Multiwinner Voting

with Fairness Constraints.. In IJCAI. 144–151.
[7] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. 2018. Ranking with

Fairness Constraints. In ICALP. 28:1–28:15.
[8] Miriam Cha, Youngjune Gwon, and HT Kung. 2017. Language modeling by

clustering with word embeddings for text readability assessment. In CIKM. 2003–

2006.

[9] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair clustering through fairlets. In NIPS. 5029–5037.
[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In ITCS. 214–226.
[11] Martin E Dyer and Alan M Frieze. 1985. On the complexity of partitioning graphs

into connected subgraphs. Discrete Applied Mathematics 10, 2 (1985), 139–153.
[12] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Song Zuo. 2018.

Incentive-Aware Learning for Large Markets. In WWW. 1369–1378.

[13] Michael Feldman, Sorelle A Friedler, JohnMoeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2015. Certifying and removing disparate impact. In KDD.
259–268.

[14] Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. 2016. A confidence-based

approach for balancing fairness and accuracy. In SDM. 144–152.

[15] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster

distance. TCS 38 (1985), 293–306.
[16] Abdulmecit Gungor. 2018. Fifty Victorian Era Novelists Authorship Attribution

Data. (2018).

[17] Dorit S Hochbaum and David B Shmoys. 1985. A best possible heuristic for the

k -center problem. Mathematics of operations research 10, 2 (1985), 180–184.

[18] Wen-Lian Hsu and George L Nemhauser. 1979. Easy and hard bottleneck location

problems. Discrete Applied Mathematics 1, 3 (1979), 209–215.
[19] Anil K Jain. 2010. Data clustering: 50 years beyond K -means. Pattern Recognition

Letters 31, 8 (2010), 651–666.
[20] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. 2016.

Fairness in learning: Classic and contextual bandits. In NIPS. 325–333.
[21] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2012.

Fairness-aware classifier with prejudice remover regularizer. In PKDD. 35–50.
[22] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. 2011. Fairness-aware

learning through regularization approach. In ICDMW. 643–650.

[23] David G. Kirkpatrick and Pavol Hell. 1983. On the complexity of general graph

factor problems. SIAM J. Comput. 12, 3 (1983), 601–609.
[24] Jian Li, Ke Yi, and Qin Zhang. 2010. Clustering with Diversity. In ICALP. 188–200.
[25] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. DeepWalk: Online Learning of Social

Representations. In KDD. 701–710.
[26] Clemens Rösner and Melanie Schmidt. 2018. Privacy preserving clustering with

constraints. In ICALP. 96:1–96:14.
[27] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs. In

SSDBM. 22.

	Abstract
	1 Introduction
	2 Model and Preliminaries
	3 A general algorithm
	3.1 An LP formulation
	3.2 Outline
	3.3 Finding facilities to open
	3.4 Assigning clients to facilities

	4 An Algorithm for = 1/2
	4.1 Algorithm
	4.2 Analysis

	5 Empirical evaluation
	5.1 Datasets
	5.2 Experimental setup
	5.3 Experimental results

	6 Hardness
	7 Conclusions
	References

